WELL-POSEDNESS AND BOUNDARY VALUE PROBLEMS FOR A CLASS OF QUASILINEAR DIVERGENCE-FORM EQUATIONS ARISING IN DENSITY FIELD DYNAMICS

GARY ALCOCK

Abstract. We study the quasilinear elliptic partial differential equation

$$-\nabla \cdot (\mu(|\nabla \psi|)\nabla \psi) = f \quad \text{in } \Omega \subseteq \mathbb{R}^3,$$

where μ is a nonlinear constitutive function. Motivated by density-field models of gravitational optics, we develop a rigorous framework for existence, uniqueness, and regularity of weak solutions, extend the analysis to exterior domains with asymptotically flat boundary conditions, and incorporate monotone nonlinear Robin–Neumann conditions modeling photon-spheres and horizons. We further establish stability estimates, continuous dependence on data, and parabolic well-posedness using nonlinear semigroup theory. A variational formulation, catalog of admissible μ -families, and finite element method (FEM) implementation outline are provided. Open problems relevant to global existence and singularity formation are discussed.

Contents

1.	Introduction	1
Notation		2
1.1.	. Physical motivation for μ and boundary conditions	2
2.	Assumptions on μ	2
3.	Weak formulation and variational structure	2
4.	Main results	3
5.	Exterior domains and optical boundary conditions	3
6.	Stability and continuous dependence	3
7.	Parabolic extension and semigroup theory	3
8.	Finite element method (FEM) implementation	4
9.	Catalog of admissible μ -families	4
10.	Open problems	4
Acknowledgements		4
References		4
Figure: Exterior Domain with Optical Boundaries		5

1. Introduction

We investigate the nonlinear elliptic equation

$$-\nabla \cdot \left(\mu(|\nabla \psi|)\nabla \psi\right) = f,\tag{1}$$

posed on a domain $\Omega \subseteq \mathbb{R}^3$. Here $\psi : \Omega \to \mathbb{R}$ is the unknown scalar potential, $\mu : [0, \infty) \to (0, \infty)$ is a nonlinear coefficient, and f represents a source term. Such equations belong to the class of quasilinear divergence-form PDEs with p-growth, generalizing the p-Laplacian. They arise in fluid

Date: September 24, 2025.

mechanics, nonlinear diffusion, and, in recent physical models, as optical potentials in effective theories of gravitation.

Notation.

- $L^p(\Omega)$: standard Lebesgue spaces, $1 \le p \le \infty$.
- $W^{1,p}(\Omega)$: Sobolev space of L^p functions with L^p weak derivatives.
- $V := W_0^{1,p}(\Omega)$: closure of $C_c^{\infty}(\Omega)$ in $W^{1,p}$.
- V': dual of V.
- $\langle \cdot, \cdot \rangle$: duality pairing between V' and V.
- 1.1. Physical motivation for μ and boundary conditions. In density-field models of gravitation, one introduces an "optical potential" ψ such that the refractive index is $n = e^{\psi}$. The flux coefficient $\mu(|\nabla \psi|)$ encodes the response of the medium to spatial gradients of ψ . Its form determines how weak-field Newtonian gravity, strong-field photon spheres, and effective horizon behavior emerge.

Boundary conditions are motivated as follows:

- **Photon sphere:** defined by an extremum of the optical circumference n(r)r. This yields a Robin-type condition with coefficient $\kappa_{\text{opt}}(\psi)$ tied to the local optical speed.
- Horizon: at the surface where outgoing null characteristics stall, one enforces an "ingoing flux only" condition. Mathematically this corresponds to a nonlinear Neumann condition eliminating outgoing flux. We emphasize this is *physically motivated but mathematically non-standard*, and justifying it within elliptic PDE theory is an open problem.

2. Assumptions on μ

We assume $\mu:[0,\infty)\to(0,\infty)$ satisfies:

- (A1) Continuity: μ is continuous on $[0, \infty)$.
- (A2) Coercivity: $\exists \alpha > 0, p \geq 2$ such that

$$\mu(|\xi|)|\xi|^2 \ge \alpha |\xi|^p \quad \forall \xi \in \mathbb{R}^3.$$

• (A3) Growth: $\exists \beta > 0$ such that

$$|\mu(|\xi|)\xi| \le \beta(1+|\xi|)^{p-1}.$$

• (A4) Monotonicity: For all $\xi, \eta \in \mathbb{R}^3$,

$$(\mu(|\xi|)\xi - \mu(|\eta|)\eta) \cdot (\xi - \eta) \ge 0.$$

If strict, uniqueness follows.

Examples include the p-Laplacian $\mu(s) = s^{p-2}$, saturating nonlinearities $\mu(s) = (1 + s^2)^{(p-2)/2}$, and MOND-like regularized forms $\mu(s) = s/\sqrt{s^2 + s_a^2}$ [6, 7].

3. Weak formulation and variational structure

Define the flux map $a(\xi) := \mu(|\xi|)\xi$. For $\psi \in W^{1,p}(\Omega)$ with boundary data $\psi = \psi_D$, the weak formulation is:

$$\int_{\Omega} a(\nabla \psi) \cdot \nabla v \, dx = \int_{\Omega} f v \, dx, \quad \forall v \in W_0^{1,p}(\Omega).$$
 (2)

Define the energy density

$$H(\xi) := \int_0^1 a(t\xi) \cdot \xi \, dt,$$

so that $a(\xi) = \nabla_{\xi} H(\xi)$. Then the functional

$$\mathcal{E}[\psi] := \int_{\Omega} H(\nabla \psi) \, dx - \int_{\Omega} f \psi \, dx$$

is convex and coercive under (A1)–(A3).

4. Main results

Theorem 4.1 (Existence). Under (A1)–(A4), for any $f \in V'$, there exists a weak solution $\psi \in W^{1,p}(\Omega)$ of (1) attaining the prescribed boundary data.

Theorem 4.2 (Uniqueness). If $a(\xi) = \mu(|\xi|)\xi$ is strictly monotone, the weak solution of Theorem 4.1 is unique.

Theorem 4.3 (Regularity). If $f \in L^q(\Omega)$ with q > 3/p', then any weak solution ψ is locally Hölder continuous: $\psi \in C^{0,\alpha}_{loc}(\Omega)$. If $\mu \in C^1$ and $f \in C^{0,\gamma}$, then $\psi \in C^{1,\alpha}_{loc}(\Omega)$.

Proofs follow standard methods from monotone operator theory and quasilinear elliptic regularity [1, 2, 3, 4].

5. Exterior domains and optical boundary conditions

Let $\Omega = \mathbb{R}^3 \setminus \overline{B_R}$ denote an exterior domain. We impose:

- Asymptotic flatness: $\psi(x) \to 0$ as $|x| \to \infty$.
- Photon-sphere boundary: Nonlinear Robin condition

$$a(\nabla \psi) \cdot n + \kappa_{\text{opt}}(\psi) \psi = g_{\text{ph}}$$
 on Γ_{ph} ,

with $\kappa_{\rm opt}$ positive and bounded.

• Horizon boundary: Ingoing-flux Neumann condition

$$a(\nabla \psi) \cdot n = g_{\text{hor}}$$
, with outgoing flux set to zero.

This asymmetric boundary condition is physically motivated but not standard in elliptic PDE theory. A full mathematical justification remains open.

Theorem 5.1 (Exterior well-posedness). Under (A1)–(A4) and the above boundary conditions, there exists a weak solution $\psi \in W^{1,p}(\Omega)$. If the boundary operators are strictly monotone, the solution is unique.

6. Stability and continuous dependence

Theorem 6.1 (Stability). Let ψ_1, ψ_2 be solutions with data (f_1, BC_1) , (f_2, BC_2) . If a is strongly monotone and locally Lipschitz, then

$$\|\nabla(\psi_1 - \psi_2)\|_{L^p(\Omega)} \le C(\|f_1 - f_2\|_{V'} + \|\mathrm{BC}_1 - \mathrm{BC}_2\|).$$

7. PARABOLIC EXTENSION AND SEMIGROUP THEORY

Consider

$$\partial_t \psi - \nabla \cdot (\mu(|\nabla \psi|) \nabla \psi) = f(t, x).$$

Let $A: V \to V'$ be the monotone operator $A(\psi) = -\nabla \cdot a(\nabla \psi)$. By Crandall-Liggett theory [5], -A generates a contraction semigroup on $L^2(\Omega)$.

Theorem 7.1 (Parabolic well-posedness). Under (A1)–(A4), there exists a unique evolution $\psi \in L^p(0,T;W^{1,p}(\Omega)) \cap C([0,T];L^2(\Omega))$. If f is time-independent and boundary operators are dissipative, then solutions converge to a steady state as $t \to \infty$.

8. Finite element method (FEM) implementation

The weak form (2) is directly implementable in finite element packages. Nonlinear terms are treated via Newton iteration with Jacobian

$$A_{ij}(\nabla \psi) = \mu(|\nabla \psi|)\delta_{ij} + \mu'(|\nabla \psi|)\frac{\partial_i \psi \, \partial_j \psi}{|\nabla \psi|}.$$

Remark 8.1. At $|\nabla \psi| \to 0$, the Jacobian may become ill-conditioned. A practical remedy is to replace $|\nabla \psi|$ by $\sqrt{|\nabla \psi|^2 + s_0^2}$ with small $s_0 > 0$ (regularization). For background on FEM analysis of quasilinear PDEs, see [8, 9].

Optical boundary conditions appear as Robin/Neumann integrals in the variational form.

9. Catalog of admissible μ -families

- *p*-Laplacian: $\mu(s) = s^{p-2}$.
- Saturating: $\mu(s) = (1+s^2)^{(p-2)/2}$. Regularized MOND-like: $\mu(s) = \frac{s}{\sqrt{s^2+s_a^2}}$ [6, 7].
- Anisotropic: μ replaced by positive-definite tensor $M(\nabla \psi)$.

10. Open problems

- Global existence with physically realistic sources f.
- Gradient blow-up and singularity formation.
- Regularity near horizons under nonlinear asymmetric BCs.
- Mathematical justification of the "ingoing flux only" horizon condition.
- Coupling of the scalar ψ -equation to tensorial sectors in relativistic completions.

ACKNOWLEDGEMENTS

The author thanks the PDE community for foundational results that make this analysis possible.

References

- [1] L. C. Evans, Partial Differential Equations, 2nd ed., AMS, 2010.
- [2] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.
- [3] O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, 1968.
- [4] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2010.
- [5] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298.
- [6] M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophysical Journal 270 (1983), 365–370.
- [7] J. Bekenstein and M. Milgrom, Does the missing mass problem signal the breakdown of Newtonian gravity?, Astrophysical Journal 286 (1984), 7-14.
- [8] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, 2008.
- [9] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer, 2004.

FIGURE: EXTERIOR DOMAIN WITH OPTICAL BOUNDARIES

Asymptotic boundary