WELL-POSEDNESS AND BOUNDARY VALUE PROBLEMS FOR A CLASS
OF QUASILINEAR DIVERGENCE-FORM EQUATIONS ARISING IN
DENSITY FIELD DYNAMICS

GARY ALCOCK

ABSTRACT. We study the quasilinear elliptic partial differential equation
—V- ((IV¢)VY) = f in Q CR?,

where p is a nonlinear constitutive function. Motivated by density-field models of gravitational
optics, we develop a rigorous framework for existence, uniqueness, and regularity of weak solutions,
extend the analysis to exterior domains with asymptotically flat boundary conditions, and incorpo-
rate monotone nonlinear Robin-Neumann conditions modeling photon-spheres and horizons. We
further establish stability estimates, continuous dependence on data, and parabolic well-posedness
using nonlinear semigroup theory. A variational formulation, catalog of admissible p-families, and
finite element method (FEM) implementation outline are provided. Open problems relevant to
global existence and singularity formation are discussed.
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1. INTRODUCTION
We investigate the nonlinear elliptic equation
=V (u(IVY)VY) = f, (1)

posed on a domain Q C R3. Here ¢ : Q — R is the unknown scalar potential, g : [0,00) — (0, c0)
is a nonlinear coefficient, and f represents a source term. Such equations belong to the class of
quasilinear divergence-form PDEs with p-growth, generalizing the p-Laplacian. They arise in fluid
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mechanics, nonlinear diffusion, and, in recent physical models, as optical potentials in effective
theories of gravitation.

Notation.

LP(Q): standard Lebesgue spaces, 1 < p < oo.

WLP(Q): Sobolev space of LP functions with LP weak derivatives.
V= Wol’p(Q): closure of C2°(9) in WhP.

V': dual of V.

(+,+): duality pairing between V' and V.

1.1. Physical motivation for y and boundary conditions. In density-field models of grav-
itation, one introduces an “optical potential” v such that the refractive index is n = e¥. The
flux coefficient 1(|V)|) encodes the response of the medium to spatial gradients of . Its form
determines how weak-field Newtonian gravity, strong-field photon spheres, and effective horizon
behavior emerge.

Boundary conditions are motivated as follows:

e Photon sphere: defined by an extremum of the optical circumference n(r)r. This yields
a Robin-type condition with coefficient kopt (1)) tied to the local optical speed.

e Horizon: at the surface where outgoing null characteristics stall, one enforces an “ingoing
flux only” condition. Mathematically this corresponds to a nonlinear Neumann condition
eliminating outgoing flux. We emphasize this is physically motivated but mathematically
non-standard, and justifying it within elliptic PDE theory is an open problem.

2. ASSUMPTIONS ON g

We assume p : [0, 00) — (0, 00) satisfies:
¢ (A1) Continuity: p is continuous on [0, 00).
e (A2) Coercivity: Ja > 0, p > 2 such that

u(€NIE® > alglP Ve e RP.
e (A3) Growth: 38 > 0 such that

|u(1EDEl < B(L+1€)P
e (A4) Monotonicity: For all ¢, € R3,

(1(1€DE = plnhn) - (€ —=n) > 0.

If strict, uniqueness follows.
Examples include the p-Laplacian p(s) = sP~2, saturating nonlinearities u(s) = (1 4 s2)®=2)/2,
and MOND-like regularized forms p(s) = s/+/s? + s2 [0} [1].
3. WEAK FORMULATION AND VARIATIONAL STRUCTURE

Define the flux map a(¢) := u(|¢|)¢. For ¢ € WP(Q) with boundary data ¢ = 1p, the weak
formulation is:

/ a(Vy) - Vudr = / fvdx, Yve Wol’p(Q). (2)
Q Q
Define the energy density

1
1= [ a9 et
so that a(§) = VeH(§). Then the functional

el = [ HVdo~ [ fuds
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is convex and coercive under (A1)—(A3).

4. MAIN RESULTS

Theorem 4.1 (Existence). Under (A1)-(A4), for any f € V', there exists a weak solution 1) €
WhP(Q) of attaining the prescribed boundary data.

Theorem 4.2 (Uniqueness). If a(§) = p(|£])¢ is strictly monotone, the weak solution of Theorem
[4.1] is unique.

Theorem 4.3 (Regularity). If f € LY(Q) with g > 3/p’, then any weak solution v is locally Holder
continuous: ¢ € C’O’O‘(Q). If n e C' and f € C%, then ¢ € 0110?((2)

loc

Proofs follow standard methods from monotone operator theory and quasilinear elliptic regularity
[, 2, 31 4].

5. EXTERIOR DOMAINS AND OPTICAL BOUNDARY CONDITIONS

Let Q = R3\ Bg denote an exterior domain. We impose:

e Asymptotic flatness: ¢(z) — 0 as |z| — oo.
e Photon-sphere boundary: Nonlinear Robin condition

(l(Viﬁ) “n+ K/opt(i/)) )= gph OI th7

with Kept positive and bounded.
e Horizon boundary: Ingoing-flux Neumann condition

a(V) - n = gnor, with outgoing flux set to zero.

This asymmetric boundary condition is physically motivated but not standard in elliptic
PDE theory. A full mathematical justification remains open.

Theorem 5.1 (Exterior well-posedness). Under (A1)-(A4) and the above boundary conditions,
there exists a weak solution ¢ € WYP(Q). If the boundary operators are strictly monotone, the
solution is unique.

6. STABILITY AND CONTINUOUS DEPENDENCE
Theorem 6.1 (Stability). Let 11,12 be solutions with data (f1,BC1), (f2,BCs). If a is strongly

monotone and locally Lipschitz, then

IV (1 = )o@y < C(ILf1 = fallvr + IBCr =BG ).

7. PARABOLIC EXTENSION AND SEMIGROUP THEORY
Consider
o =V - (u(IVY)VY) = f(t,x).

Let A :V — V' be the monotone operator A(¢) = —V - a(V). By Crandall-Liggett theory [5],
—A generates a contraction semigroup on LQ(Q).

Theorem 7.1 (Parabolic well-posedness). Under (A1)-(A4), there exists a unique evolution 1) €
LP(0,T; WHP(Q)) N C([0,T]; L*>(Q)). If f is time-independent and boundary operators are dissipa-
tive, then solutions converge to a steady state as t — oo.



4 GARY ALCOCK

8. FINITE ELEMENT METHOD (FEM) IMPLEMENTATION

The weak form is directly implementable in finite element packages. Nonlinear terms are
treated via Newton iteration with Jacobian

O 05
VY|

Remark 8.1. At |V¢| — 0, the Jacobian may become ill-conditioned. A practical remedy is to

replace |V| by v/|V¢|? + s2 with small sy > 0 (regularization). For background on FEM analysis
of quasilinear PDEs, see [8], 9].

Aij (V) = p(IVY1)di; + 1/ (V)

Optical boundary conditions appear as Robin/Neumann integrals in the variational form.

9. CATALOG OF ADMISSIBLE p-FAMILIES

e p-Laplacian: pu(s) = sP~2.
e Saturating: u(s) = (14 s2)®=2)/2,

e Regularized MOND-like: u(s) = \/% 6], [7].

e Anisotropic: u replaced by positive-definite tensor M (V).

10. OPEN PROBLEMS

Global existence with physically realistic sources f.

Gradient blow-up and singularity formation.

Regularity near horizons under nonlinear asymmetric BCs.

Mathematical justification of the “ingoing flux only” horizon condition.
Coupling of the scalar ¥-equation to tensorial sectors in relativistic completions.
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FIGURE: EXTERIOR DOMAIN WITH OPTICAL BOUNDARIES
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