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Density Field Dynamics (DFD) posits a scalar refractive field ψ(x) such that light propagates
with n = eψ (one-way phase speed c1 = ce−ψ) and matter accelerates as a = c2

2 ∇ψ. While our
cavity–atom redshift test probes the photon sector, matter-wave interferometers test the external
wavefunction coupling. We derive the perturbative phase from the ∇ψ ·∇ operator in the DFD-
modified Schrödinger equation and obtain a clean discriminator for light-pulse interferometers:

∆ϕDFD = ℏ k2
eff
m

g

c2 T
3 ,

in contrast to the standard GR scaling ∆ϕGR = keffgT
2. We provide explicit, plug-in predictions for

Kasevich–Chu, Raman, and Bragg geometries (vertical and horizontal), source-mass configurations,
and dual-species protocols (Rb/Yb), and we analyze systematics with look-alike time scalings. For
Earth g and keff ∼1.6 × 107 m−1 (Rb, 780 nm), the DFD residual is ∼2 × 10−11 rad at T = 1 s, within
the reach of current long-baseline instruments when using rotation, k-reversal, and source-mass
modulation.

I. INTRODUCTION

Atom interferometers are leading probes of gravity, red-
shift, and fundamental symmetries.[1–6] In DFD, photons
follow the eikonal of an optical metric with n = eψ while
matter sees the conservative potential Φ = − c2

2 ψ.1 The
photon-sector discriminator is a co-located cavity–atom
redshift comparison across altitude; here we develop the
matter-sector analogue: light-pulse atom interferometry.
The novelty is a gradient–gradient coupling that yields a
T 3 scaling distinct from the GR T 2 law, giving a route
to sector-resolved falsification with existing facilities.

Relation to existing gravity-gradient cancellation and
why it was not seen. Long-baseline experiments ac-
tively suppress or calibrate out cubic-in-T gravity-
gradient contributions using frequency-shift gravity-
gradient (FSGG) compensation or closely related k-vector
tuning schemes,[27–30] because within GR such terms
are treated as systematics. As a result, published analyses
typically (i) operate at fixed T for the headline measure-
ment, (ii) do not report a residual vs. T regression with
the even-in-keff , rotation-odd discriminator posed here,
and (iii) use k-reversal specifically to cancel odd-in-keff
laser/systematic terms. To our knowledge, no experiment
has isolated a coefficient beven in ϕres(T ) = aT 2 + bevenT

3

that (a) is even under keff →−keff and (b) flips sign un-
der 180◦ rotation of a horizontal baseline—the specific
signature predicted here.

1 See the Einstein 1911–12 completion and the strong-field/GW
manuscripts for the action, normalization, and recovery of GR’s
weak-field coefficients; we adopt that notation here.

II. THEORY: ψ-COUPLING IN THE
SCHRÖDINGER DYNAMICS

To first order in weak fields (|ψ| ≪ 1), the nonrelativis-
tic equation for mass m reads (expanding e−ψ≈1 − ψ)

iℏ ∂tΨ = − ℏ2

2m∇2Ψ +mΦ Ψ + ℏ2

2m

[
ψ∇2Ψ + (∇ψ)·∇Ψ

]
,

(1)

with Φ ≡ − c2

2 ψ. Treat H = H0 +δH with H0 = p2

2m +mΦ
and

δH = ℏ2

2m

[
ψ∇2 + (∇ψ)·∇

]
. (2)

Evaluate the small phase along the unperturbed classical
branches A,B:

∆ϕDFD = 1
ℏ

∫ 2T

0
dt
(

⟨δH⟩A − ⟨δH⟩B
)
. (3)

The operator (∇ψ)·∇ acting on a locally plane-wave factor
on each branch pulls down the instantaneous momentum,
⟨(∇ψ)·∇⟩ → i (∇ψ)·p/ℏ, so that

∆ϕ∇ψ = − 1
2m

∫ 2T

0
dt (∇ψ)·∆p(t) . (4)

In uniform Earth gravity, ∇ψ = −2g/c2; the constant
part cancels between arms unless one accounts for the
finite spatial separation of the arms induced by the light
pulses. Keeping the leading variation sampled at the arm
positions yields the T 3 law below.
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III. LIGHT-PULSE GEOMETRIES AND THE T 3

DISCRIMINATOR

Consider a vertical Kasevich–Chu sequence (π/2–π–π/2
at t = {0, T, 2T}) with effective Raman wavevector keff ẑ.
Let the recoil velocity be vr = ℏkeff/m. Between pulses,
the branch momentum difference is piecewise constant:
∆pz(t) = +ℏkeff for 0 < t < T , and −ℏkeff for T < t < 2T
(mirror swaps the arms). Using (4) with ∇ψ(rA,B , t) =
−2 g ẑ/c2 evaluated at the arm locations and expanding
to first order in the instantaneous arm separation ∆z(t)
(which is vrt on the first half and vr(2T−t) on the second),
the constant part cancels but the linear piece adds over
the two intervals, giving

∆ϕKasevich−−Chu
DFD = keff vr g

c2 T 3 = ℏ k2
eff
m

g

c2 T
3 . (5)

By contrast, the standard light-pulse phase from GR
(after the usual laser phase bookkeeping) is

∆ϕKasevich−−Chu
GR = keff g T

2 . (6)

Numerics (Rb, 780 nm): keff ≃ 1.6 × 107 m−1, vr =
ℏkeff/m ≈ 1.2 × 10−2 m s−1. For T = 1 s,

∆ϕKasevich−−Chu
DFD ≈ (1.6 × 107)(1.2 × 10−2)(9.8)

(3.0 × 108)2 ≃ 2 × 10−11 rad.

(7)

The absolute GR phase keffgT
2 ∼ 1.6×108 rad is removed

by chirp/common-mode subtraction; the residual DFD
term is what to search for, using scaling and sign tests
below.

A. Horizontal baselines and rotation

For a horizontal Raman/Bragg baseline with separation
direction n̂, Earth’s field projects as g·n̂:

∆ϕhoriz
DFD = ℏ k2

eff
m

g·n̂
c2 T 3, (8)

which flips sign under 180◦ rotation about the vertical.
This provides a powerful discriminator from many sys-
tematics.

B. Source-mass configuration (tabletop)

Place a dense source mass (e.g. ∼500 kg W) at distance
R producing gs = GM/R2. Then

∆ϕsrc
DFD = ℏ k2

eff
m

gs
c2 T

3 × G(geometry), (9)

where G encodes near-field placement; lock-in by modu-
lating the mass.

C. Dual-species protocol (Rb/Yb)

Because the DFD term scales as ∆ϕDFD =
(ℏk2

eff/m) (g/c2)T 3, the differential phase between two
species i, j operated in matched geometry is

∆ϕ(i−j)
DFD = g T 3

c2 ℏ

(
k2

eff,i

mi
−
k2

eff,j

mj

)
. (10)

If both species share the same lattice/Bragg wavelength
(engineered co-propagating optics), keff,i=keff,j and (10)
reduces to a clean mass discriminator ∝ (1/mi − 1/mj).
With independent Raman pairs (e.g. 87Rb at 780 nm and
171Yb at 556 nm), keep the explicit keff values; Eq. (10)
is then the quantity to regress against T 3. In either case,
the GR common-mode keffgT

2 cancels under standard
k-reversal and conjugate-AI subtraction.

IV. CONCRETE EXPERIMENTAL DESIGNS
(PLUG-AND-PLAY)

Design A (vertical Kasevich–Chu, 10 m fountain).
Species 87Rb, λ = 780 nm, keff ≈ 1.6 × 107 m−1, pulses
at t = {0, T, 2T} with T = 1–2 s. Arm apex separation
∆zmax ≈ vrT ∼ 1–2 cm.

∆ϕDFD ≈ 2 × 10−11 rad × (T/s)3.

Design B (horizontal Bragg, L ∼ 1 m, rotation). Ro-
tate the bench by 180◦ about ẑ to flip g ·n̂. DFD flips
sign; many laser/system alignment systematics do not.

Design C (tabletop source mass). Dither a 500 kg tung-
sten stack at R ∼ 0.25 m. Search at the dither frequency;
scale with gs/c

2.

V. DISCRIMINANTS FROM GR AND
SYSTEMATICS CONTROL

Key orthogonal signatures:

1. Time scaling: DFD ∝ T 3 vs. GR ∝ T 2.

2. Orientation: rotation flips DFD (via g·n̂), many
systematics do not.

3. k-reversal: DFD ∝ k2
eff (even under keff → −keff);

laser-phase systematics change sign and cancel.

4. Recoil dependence: DFD ∝ vr; separate from
gravity-gradient terms using velocity selection.

5. Dual-species: residual ∝ (1/m1−1/m2) or the full
k2

eff/m contrast in Eq. (10); GR null after common-
mode rejection.

Systematics evidence and controls. Gravity-gradient
noise (GGN) from atmosphere and seismic fields sets
the long-baseline floor; recent characterizations provide
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TABLE I. Systematics overview and kill-switches. The DFD signal alone shows T 3 scaling, rotation sign flip, and even parity
under k-reversal (∝ k2

eff).

Effect T -scaling Rotation flip k-reversal parity
DFD (target) T 3 Yes Even (k2

eff)
Gravity gradient Γ T 2/T 3 mix Often No Mixed
Wavefront curvature / tilt T 2 No Odd (cancels)
Vibrations (residual) ≈ T 2 No Odd/Even mix
AC Stark / Zeeman pulse-bounded No Design-dependent
Laser phase (uncorrelated) T 2 No Odd (cancels)

high/low-noise models and motivate underground siting
or subtraction.[20, 21] Wavefront aberrations are a lead-
ing accuracy term; dedicated measurements and in-situ
phase-retrieval methods demonstrate < 3 × 10−10 g equiv-
alent bias and routes to further reduction.[18, 19] Ac-
tive isolation routinely delivers 102–103 vertical attenua-
tion at 30 mHz–10 Hz in fieldable systems.[14] Frequency-
dependent electronics/Raman-chirp phases are odd-in-keff
and cancel under k-reversal with residuals characterized
and mitigated.[17, 24] Rotation platforms and mirror-
tilt compensation explicitly separate Coriolis/Sagnac
terms and have been demonstrated across wide orien-
tation/rotation ranges.[15, 23] Source-mass gravity sig-
nals in horizontal/baseline geometries establish lock-in
protocols directly applicable to our T 3 search.[22]

VI. SENSITIVITY SNAPSHOT AND
FEASIBILITY

Long-baseline results demonstrate the needed stabil-
ity and controls: the Stanford 10 m fountain achieved
long-time point-source interferometry with single-shot
acceleration sensitivity at the few×10−9 g level and
1.4 cm arm separation,[7, 8] while dual-species EP tests
reached η ∼ 10−12 with 2T = 2 s free fall.[9] VLBAI
(Hannover) reports high-flux Rb/Yb sources, 10 m mag-
netic shielding, and seismic attenuation tailored for long
baseline.[10, 11] SYRTE’s absolute gravimeters and mo-
bile surveys document µGal-class stability with active vi-
bration isolation.[12–14] These capabilities jointly bound
key systematics (vibration, wavefronts, gradients) at or
below our target |∆ϕDFD| ∼ 2 × 10−11 rad for T ∼ 1 s,
and several groups already deploy rotation control and
k-reversal protocols routinely.[15–17]

VII. DISCUSSION AND OUTLOOK

This work closes the matter-sector gap in the DFD
experimental program. Together with the cavity–atom
redshift comparison (photon sector), matter-wave tests
over-constrain the sector coefficients. A null result at or

below the |∆Φ|/c2 lever arm (after the stated controls)
would falsify this DFD sector. Positive detection would
present a geometry-locked, scaling-locked deviation from
GR that cannot be attributed to standard systematics.
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Appendix A: Sketch of the T 3 derivation from the
gradient operator

Write the branch centers as zA,B(t) = z0(t) ± 1
2∆z(t)

with ∆z(t) = vrt for 0 < t < T and ∆z(t) = vr(2T − t)
for T < t < 2T . Expand the field along the arms:

∇ψ(zA,B) ≈ ∇ψ(z0) ± 1
2 ∆z ∂z(∇ψ)|z0 . (A1)

The constant part ∇ψ(z0) cancels in (4) because∫ 2T
0 ∆pz dt = 0 for the piecewise ±ℏkeff profile. The

linear term gives (using Earth field ∂z(∇ψ) = −2Γ ẑ/c2

and the kinematic separation implicit in ∆z)

∆ϕ∇ψ = − 1
2m

∫
dt
[ 1

2 ∆z(t) ∂z(∇ψ)
]

· ∆p(t)

→ g

c2
ℏkeff

m

∫ T

0
t dt + g

c2
ℏkeff

m

∫ 2T

T

(2T − t) dt

= ℏkeff

m

g

c2

(T 2

2 + T 2

2

)
T = ℏkeff

m

g

c2T
3, (A2)

and multiplying by the impulsive momentum separation
ℏkeff from the light pulses yields (5). A full WKB treat-
ment gives the same result and shows cancellation of the
companion ψ∇2 piece for these geometries.

Appendix B: Figure templates (TikZ/PGFPlots)
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FIG. 1. Light-pulse Mach–Zehnder (Kasevich–Chu) geometry.
Solid/dashed are the two arms; pulses at 0, T, 2T .
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FIG. 2. Scaling discriminator: DFD T 3 vs. GR T 2.
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