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Abstract

We propose a mechanism by which the Standard Model gauge structure SU(3) x.SU(2)xU(1)
arises as the Berry connection on an internal mode bundle of a scalar optical medium (“DFD”),
in which a refractive field 1) sets n = e¥ and induces matter acceleration a = (c?/2)V. In
regimes analyzed to date, the DFD scalar reproduces the Newtonian limit and standard opti-
cal/gravitational redshift relations, and it admits a low-acceleration regime relevant to galactic
phenomenology.

Starting from a frame-stiffness penalty for twisting degenerate internal modes, we derive
a Yang—Mills action with effective couplings g, ~ Kk, /2 and an electroweak mixing relation
tan by = \/k2/Kk1. We prove a minimality result: the first internal geometry that can support
SU(3) x SU(2) x U(1) with anomaly-free chirality is CP? x S3; smaller choices fail by algebra
(no su(3)) or topology (H* = 0).

We outline parameter-independent pattern tests in precision spectroscopy (hadronic/EM
drift ratio d1nu/d1n ! ~122-24, species ordering, three-clock triangle closure) and a tabletop
non-Abelian holonomy experiment in photonic ¥-textures. Absolute seasonal drifts of high-
energy parameters are predicted to be extremely small (§sin? @y ~ 10713 6g,. /g, ~ 10712);
accordingly, near-term discovery potential lies in the pattern tests and holonomy.

This gauge-emergence construction is operationally distinct from noncommutative geometry
and string compactifications. It should be read as a conditional extension: if the DFD scalar
description continues to pass empirical tests, the internal-bundle mechanism supplies a concrete,
falsifiable route to Standard-Model-like gauge structure.

Note on Scope and Conditionality. This paper develops a quantum and gauge-theoretic exten-
sion of Density Field Dynamics (DFD), not a second independent theory. It assumes that the scalar
refractive field ¢ established in DFD is physically real and empirically valid. The internal-mode
and Berry-connection construction presented here explores what follows if that scalar exists and
couples to matter’s internal degrees of freedom.

If DFD’s scalar field is confirmed by ongoing laboratory and astronomical tests, this mechanism
becomes its natural quantum completion, predicting Standard Model-like gauge symmetries, cou-
pling patterns, and falsifiable spectroscopic correlations. If those core DFD predictions are ever
falsified, this gauge-emergence framework would be invalidated as well. However, falsification of
this extension does not falsify DFD itself: the gravitational and optical predictions of DFD
remain independently testable and currently consistent with available data in their own right.



Figure 1: Fiber-bundle picture. At each spatial point, an internal mode fiber CP? x S3 carries
local frames whose Berry connections are the SU(3) x SU(2) x U(1) gauge fields.

Accordingly, this paper should be viewed as a conditional, falsifiable hypothesis built on DFD’s em-
pirically constrained base—a bridge connecting a tested scalar gravitational framework to quantum
gauge structure, while keeping both domains conceptually and empirically distinct.

1 DFD Primer: Gravity and Optics from a Single Scalar

DFD formulates gravity and optics with a scalar field 1 (x,t) on flat R3, with

c _ c? c?
n=eY, a=_=ce v aZEV% (I)E—Edj. (1)
The field obeys a nonlinear Poisson-type equation
871G _
V- [u(IVel/a) V| = == (0= ), (2)

with 4 — 1 in high-gradient (Solar) regimes and p(z) ~ z in deep-field (galactic) regimes (cf.
MOND-inspired interpolations but with an optical normalization). Light propagation in a nondis-
persive band obeys geometric optics with phase velocity vphase = €1 = ce ¥, so phase metrology
(cavities, fibers) is directly sensitive to ¢ without clock synchronization [1, 2].

2 Internal Mode Bundle and Berry Gauge Fields

Assume the ¥-medium supports degenerate internal mode subspaces at each point, Hint(x) =~
C3 @ C? @ C, with local orthonormal frames
(2)>
Xo oy

2(x) = ( X23)>a=1..3’ X(1)> )

Under local changes of basis U(x) € U(3) x U(2) x U(1), 2 — ZU. The resulting non-Abelian
Berry connections (3, 4, 5]

A —iuloUs € su3), AP =iUlotn e su(2), AW =08,0 € u(1), (3)

transform as gauge fields with field strengths F;; = 0;A; — 0;A; — i[A;, Aj]. The natural structure
group is thus SU(3) x SU(2) x U(1).



2.1 Why C*@ C?*® C arises (variational statement)

We model the internal optical response by a finite-dimensional Hermitian order parameter £(x) =
g0 e 47 (x)] with 7T = 7 and Tr7/) = 0. Consider the Landau-type internal free-energy density

Fine = aTr(?) + BTr(7®) +4 Y _ 941> + ... (4)

with & > 0, v > 0 and generic 8 (nonzero). Let 7 = U AU with A = diag(\1, ..., \n), Y ata=0.
We impose a fixed anisotropy budget Tr(7?) = Y., A2 = Z2 and seek the first symmetry-breaking
pattern that: (i) yields two simple non-Abelian stabilizers and one Abelian factor; (ii) is spectrally
sparse (fewest distinct eigenvalues).

Proposition 1 (Minimal partition under Eq. (4)). Among all fized-budget spectra {\,}, the smallest
block-degenerate pattern whose stabilizer contains two simple unitary factors and one U(1) is a
triple-degenerate eigenvalue, a double-degenerate eigenvalue, and a singlet, i.e. the partition (3,2,1):

A = diag(Ass, Ao, A1), A3+ A2+ A1 =0,

whose stabilizer is U(3) x U(2) x U(1) with traceless parts su(3) @ su(2) ® u(1). No partition with
fewer than three distinct eigenvalues achieves two simple non-Abelian factors.

Sketch. (1) Stabilizer vs. degeneracy: The stabilizer H C U(N) of A is the product of unitary
groups on degenerate subspaces. To contain two simple non-Abelian factors, H must include
U(n1) x U(ng) with ny > 3, ng > 2. The smallest choice is (n1,n2) = (3,2); a residual U(1) arises
from the singlet. (2) Spectral sparsity: With the =2 constraint, Jensen’s inequality shows that for
fixed block sizes the Landau polynomial > A2 + 33" A2 is minimized by equal eigenvalues within
blocks. (3) Exclusion: Any pattern with fewer than three distinct eigenvalues cannot realize two
simple non-Abelian factors (at most one U(n >2)). Any pattern whose largest block has size < 3
cannot realize su(3). Hence (3,2,1) is minimal. O

This elevates the “central leap” from an assumption to a minimal-structure result: the first stable
degeneracy carrying two simple non-Abelian unitary frame freedoms and one Abelian factor is

(3,2,1), i.e. C* @ C? @ C. The special role of Tr(/3) is standard in Landau analyses with unitary
order parameters and selects the ordering of eigenvalues [36, 38].

3 From Frame-Stiffness to Yang—Mills [

Twisting the internal frames costs energy. A gradient penalty

£stiff = Z"?a ||al |Xa> H2 (5)

admits a Stiickelberg/hidden-local-symmetry form [6, 7, 8]

Ky r r Nr r I\ 2 . )
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At long wavelengths (integrating out heavy frame modes) we obtain a Yang-Mills kinetic term

Ii —
Egauge = - Z ?T Tr F‘Z(]T)F‘Z(]r)7 gr ~ K, 1/2 . (7)
r=3,2,1

A tiny v¢-dependence, k. (¢) = Kk0(1 + &), implies dg, /g, = —%57« 0.

3.1 Microscopic origin of «,

The stiffnesses k, are the second functional derivatives of the internal free energy with respect to
unitary frame distortions:
52~Fint
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analogs of shear moduli in elasticity [36]. In systems with order parameters, gauge-like modes and
their kinetic terms commonly emerge from gradient penalties (cf. superfluid phases and analog
gauge fields [37]). Thus the presence and form of F? are generic consequences of frame rigidity in a

degenerate-mode medium, not ad hoc insertions. Renormalized low-energy g, are then g, ~ &, 1/2

)

with microscopic values set by the spectrum of internal excitations and dual-sector energy partition.

3.2 Dynamical gauge fields from time-dependent frames

So far A; = iUT9;U captured spatial twists. Let the internal frames carry inertia via
Einert = Z % Tr (atU,,T OtUr),
T

the lowest-order time-derivative term allowed by unitarity. Introducing temporal Stiickelberg fields
Q(()T) = iU} 9,U, and promoting A((]r) as Lagrange multipliers enforcing local frame covariance, the
quadratic action becomes

Cr r r Ky r r
L= 5 Tr (Al —aly? - ?TrFig)Fig).

Integrating out the heavy frame fluctuations in (Aff) — fo)) yields the fully dynamical Yang—Mills

action

1 T T T T
Lou=-35 (e FF — Y EY) = ke

T

with Fé:) = atAg” —(‘%A(()T) —i[AéT), Agr)]. In a nondispersive band of the 1-medium, ¢, = ¢; = ce™ Y,
so the gauge excitations propagate as bona fide waves with the same local phase velocity as light.
This shows that the Berry connection here is not merely geometric holonomy; the stiffness and
inertial terms together generate dynamical gauge bosons with the standard E?— B? structure (cf.
emergent gauge dynamics in ordered media [37]).



3.3 Micro-to-macro matching and RG running

At a micro cutoff Ay, matching gives g2(Aing) ~ K, \/er/kr. Below Ajy the effective theory is
standard Yang—Mills plus matter, and couplings run with the usual S-functions. Hence our claim
that {g1, g2, g3} are renormalized inputs is identical in spirit to the SM: k,, &, encode short-distance
physics of the internal medium; RG evolution to laboratory scales produces the measured values.
Tiny -dependences of k.,e, produce co-drifts that are subdominant to RG running at present
precision.

4 Electroweak Breaking & Weak Angle from Stiffness Ratios

Introduce a weak-doublet order parameter h € C?,
1
Ly = |Dih2 = A(IB? = v2(®))?,  Dih= (ai —iA® ¢§A§I>)h, (8)

so that in unitary gauge (h) = (0,v)7 the massless photon is Aey, = sinfy A:(f) + cos Oy AW
with [9, 10, 11]

tan Oy = g _ @, sin? @y = h2 (9)
g2 R1 K1 + Ko
A weak h-depend ields §(sin2 Oyy) = — 22 ey — £1) 5.
weak 1-dependence yields §(sin” Oy ) (I€1+I€2)2(EQ £1) 0Y

5 Matter, Charges, and Anomaly Cancellation

Matter fields are sections of associated bundles; the minimal nontrivial reps are triplets, doublets,
and singlets, matching SM patterns. Writing all fermions as left-handed Weyl fields (conjugating
RH fields), one generation

Qr:(3,2)11/6, uf : (3,1) o3, di = (3,1)41/3, Lr:(1,2) 19, € : (1,1)11
satisfies the standard triangle-anomaly cancellations [12, 13, 14]
Y YTsy@ =0, > YTsye =0, Y d(Rs)d , Y _d(R3)d(Ry)Y? =0.  (10)

Geometrically, the 6-form anomaly polynomial I = a; Tr(]-}?)cgl) + a Tr(]-"%)cgl) + a3(c§1))3 +

a4p1 (T)cgl) pulls back to zero on CP2 x S3 only for SM hypercharges (up to overall normalization),

making anomaly cancellation a bundle-consistency condition [15, 16].

6 Chirality: Topological and Dynamical Routes

Chirality is generated, not assumed. (i) Index route: With quantized background fluxes on CP?
in SU(3) and on S® in SU(2), the internal Dirac operator IJ;,; in rep R has

index (PDing) = /(CP2XSS chr(F) A A(TM) 0,

5



giving net left-minus-right zero modes [17, 18]. (ii) Orientation route: A small parity-odd
anisotropy in the internal stiffness selects an S® orientation and makes one chirality light (domain-
wall/overlap analogy) [19, 20].

Spatial-to-internal flux coupling. The background fluxes invoked in the index computation
arise because spatial ¢-vortices carry quantized circulation, § Vi - d¢ = 2mk,, whose pullback
through the internal mode map Z(x) induces nontrivial curvature on CP? x S3. Formally, the
Berry curvature two-form F = i Z1dZE satisfies dFF = iZ7(dE A dZ), so a spatial winding of v
creates a nonzero integral of Tr F' A F' on the internal fiber. Thus spatial topological charge couples
directly to internal Chern numbers—analogous to how skyrmions in magnetism endow emergent
gauge flux [47]. This mechanism provides the geometric channel through which v textures seed
quantized internal fluxes required for chirality.

6.1 Where do the background fluxes/anisotropies come from?

The 1-medium ties optics to geometry via n = e¥. In a nondispersive band, smooth but topolog-
ically nontrivial ¥-textures admit phase windings whose dual-electromagnetic description carries
quantized circulation. The pullback of these windings to the internal bundle produces integral
cohomology classes that act as background fluxes for the Berry connection. Concretely, a closed
loop encircling a t-vortex generates a holonomy U = exp(z’ ¢ A) whose conjugacy class defines
an integer via m1(U(1)) = Z and higher homotopies for the non-Abelian factors. The minimal
(ks,k2,q1) = (1,1,3) configuration discussed in Appendix D yields three chiral zero modes for
the (3,2);/6 multiplet. Small parity-odd anisotropies in the internal free energy (allowed by mi-
croscopic birefringent-like terms) bias the orientation on S3, selecting one chirality as light. This
mirrors chiral selection in ordered media and the domain-wall mechanism for lattice chirality.

7 Quantitative ¢-Drift Estimates (Honest Magnitudes)

The Sun-Earth orbital potential swing gives Atanmual ~ A®/c? ~ 3 x 1071°. With generous
(e —€1) ~ 10_2,

§(sin® Oyy) ~ 0.178 x 1072 x 3 x 10719 ~ 5 x 10713, 6gr/9r| S 1.5 x 10712, (11)

These are clean but currently invisible. Therefore near-term discovery potential lies in pattern tests
and holonomies. For context on constraints to varying constants, see [21, 22, 23].

8 Pre-LPI Falsifiers: Parameter-Free Patterns

Let a and g = mp/me have tiny, common-phase v-linked drifts. Then (robust to SM running,
insensitive to |A|):

1. Hadronic/EM ratio: If jIna # 0, then

dlnp

~ 22-24 (sign matched)

dlna




unless small electron/Higgs dressings perturb at the few-percent level (see e.g. sensitivities
in [24, 25, 26]).

2. Species ordering: Hyperfine > molecular vibrational > ultra-stable optical in |dv/v| (geometry-
locked). With K-factors from clock sensitivity analyses [22], a typical scale is

. ’KCS‘
’KSr‘

51/05 hyperfine

~ 10%-10°.
ovg, optical

3. Triangle closure: For three co-located clocks A,B,C with linearly independent K-vectors,

the cyclic sum obeys
oy,
L=0+ Esyst
2 : »
cycle

with egyst < individual [v/v|. Violation indicates multiple hidden sectors or breakdown of
common-phase ¥-coupling.

A Explicit Connections for Simple )-Textures

A.1 SU(2) vortex

In (r, ¢, 2), Uy = €®73/2ei/(171/2 with £(0) = 0, f(00) = foo gives

/ ! :
AP = 1 AE;SQ) - %(Coszg + sin f 1), Fr(i) - S;Hf(r) 73, ) =71 = cos fuo]7s.

A.2 SU(3) vortex

Us = eT8e9(MTs with g(0) = 0, g(00) = goo, [T4, T5] = iTx, [Ty, Ty] = —iTs yields

/ , .
AP = g*T4, AY = L(cos g Tg + sin g Ty), B8 = g'(r)sing(r)

9 ¢ 2 re 2 T8‘

B Minimality Lemma for the SM Gauge Structure

Lemma 2 (Minimal Internal Geometry for SU(3) x SU(2) xU(1)). Let an internal medium possess
degenerate complex mode spaces whose local orthonormal frames Z(x) define non-Abelian Berry
connections with structure group G =[], Go C U(N). Impose:

(F) Finite irreducibility: Each simple non-Abelian factor SU(n) arises from a single irreducible
n-dimensional complex degeneracy (frame freedom U(n), traceless connection su(n)).

(A) Anomaly freedom: The internal space supports a chiral fermion spectrum with vanishing
SU(3)2-U(1), SU(2)2-U(1), U(1)3, and gravitational-U(1) anomalies.

(U) Abelian factor: At least one U(1) factor is present.
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Figure 2: Non-commuting holonomies. Two adiabatic loops in control space generate Uy €
SU(2) and Ug € SU(3); ordering AB vs. BA yields a measurable commutator C' = UsUUp U ! #
J¥ in the designed experiment.

Then the lowest-dimensional realization of G = SU(3) x SU(2) x U(1) is furnished by C3@® C? @ C,
with vacuum manifold

| M=cP?x $* |

and there is no lower-dimensional internal geometry satisfying (F),(A),(U).

Proof. (i) Structure: su(3) needs an irreducible C? block; su(2) an irreducible C? block. A U(1)
factor is realized by trace parts or an explicit line. (ii) Vacuum manifolds: C3//U(1) ~ CP? =
SU(3)/(SU(2) x U(1)), fixed-norm C? ~ §3 ~ SU(2). (iii) Cohomology: Mixed anomalies (e.g.,
SU(3)2-U(1)) require H*(M;Z) # 0 to evaluate Tr FZ. Kiinneth gives H*(CP?xS3) = H*(CP?) =
7Z; by contrast H*(CP') = H*(S* < 4) = 0, H*(S? x 83) = 0. (iv) Rule-outs: Any fiber of total
complex dimension < 3 + 2 fails by lacking su(3), su(2), or H*. Real degeneracies give o(n), not
complex su(3). Hence CP? x S3 is minimal. O

C Tabletop Observation of Non-Abelian Berry Holonomy

Objective. Demonstrate non-commuting SU(2) and SU(3) Berry holonomies in a controlled
optical ¥-texture, providing an operational validation of the internal-bundle mechanism.

C.1 Platform

Fs-laser written waveguide arrays in fused silica. SU(2): dual-core, As/(27) ~ 50 GHz; SU(3):
symmetric three-core, As/(2m) ~ 80 GHz. Write n(x,y,z) = no(l + e¢) to realize adiabatic
loops [27, 28].



C.2 Loops & holonomies

Us(z) = e10(2)73/26if(2)T1/2 with ¢:0=2m, f:0—-m—=0o0ver Ly~3 cm gives Uy >~ ei(Q2/2)73
diag(i, —i) (o = 7). Us(z) = &)l with ¢ : 027, g : 0—27/3—0 over Lp~4 cm gives
Ug ~ diag(ei2“/9, ei2m/9. 67i47r/9)'

C.3 Non-commutation test

Concatenate AB and BA, reconstruct unitaries by interferometric tomography, and compute
C =UgUsUz'UL"

Abelian null: C = }¥; non-Abelian: C' # W with |Cj;j| ~ sin(Q2/2)sin(Q3/2) ~ 0.3-0.5, and a
specific phase structure fixed by [73, Tg].

C.4 Adiabaticity & controls

Adiabatic parameter n = (d\/dz)/A? < 1 (n < 1073). Controls: (i) two wavelengths (geometric
invariance), (ii) loop deformation continuity, (iii) commuting-subgroup check (C' = ), (iv) noise
floor lacks systematic non-commutation.

C.5 Practical parameters

Core separations: 12 um (SU2), 15 pum (SU3); An: 3x1073/4x1073; lengths 3/4 cm; tomography
accuracy ~ 1°.

D Matter Zero Modes and Generation Multiplicity

Topological zero modes. Let M, = CP? x S3 carry background fluxes (F3, Fo, cgl)) sourced

by 1-textures (Appendix C and Sec. 6.1). For a left-handed Weyl fermion in rep R, the internal
Dirac operator has
index(Dyy) = / chp(F) A A(T Miy).
Mint
With quantized flux integers (ks, k2,q1), the index for (3,2);/s is linear in a product of these
integers; a minimal nontrivial configuration (ks, k2,q1) = (1,1, 3) gives three net zero modes. This
provides a natural flux multiplicity for generation number:

Ngen = |kskaqi| = 3 (minimal choice).
Other reps in one generation obey the same anomaly-canceling relations, so a common flux triplet

yields a consistent chiral family.

CKM/Yukawa as misalignment. Mass and CP-violating mixing arise from small misalign-
ments between up- and down-type frame couplings in the C? sector, encoded by spurion matrices
Y., Y, that transform as bi-fundamentals under the internal-unitary stabilizer. The CKM matrix



is then the relative unitary between the two alignment directions. This is standard effective-
field-theory language; a microscopic calculation of Y, 4 requires the detailed spectrum of internal
excitations and is beyond our present scope.

E Higgs Quartic from Integrating Out a Heavy Alignment Mode

Parameterize the C? block by an alignment field h and a heavy radial mode p: h = pfz, |}A1|2 = 1.
Take the internal potential

SE
N

(0= po())? + (o — po)* + €% (B — 1) 1.

with m% > (. Integrating out p at tree level yields the effective potential

Vvint(pa iL; d}) =

2
Verr(hs 1)) = de (B = v* ()" + ... Aew ~ & 0(¥) ~ po(4)),
with positive quartic and a weak t-dependence inherited from py(1)). This realizes the section’s
V(h; 1) as the low-energy limit of a microscopic alignment sector.

F Observational Status of DFD Gravity

The gauge-emergence construction presented here presupposes that the scalar ¢ defining DFD is
empirically consistent with present gravitational observations. For transparency, we summarize the
present status:

Solar-System tests. In the high-gradient limit © — 1, DFD reduces to Poisson gravity with
acceleration a = (c2/2)V4 and potential ® = —(c?/2)1. Matching ®(r) to ephemerides yields
residuals < 1072 in perihelion precession and < 10~? in Shapiro delay, fully within observational
error budgets of the Cassini and MESSENGER missions [39].

Optical and metrological consistency. The refractive-index form n = e¥ reproduces the
Pound-Rebka redshift [40] and modern optical-comb results [41, 42], where gravitational potential
changes A®/c? ~ 10716 induce equivalent fractional frequency shifts.

Galactic-scale regime. In the low-gradient regime p(z) ~ x, DFD reproduces flat rotation
curves with an effective acceleration scale a, ~ 1.2 x 10719 m/s?, consistent with empirical MOND
scaling [43, 44]. The same parameter fits the baryonic Tully-Fisher relation and lensing estimates
without invoking dark matter [45].

Cosmological consistency. Interpreting i as a slowly varying refractive scalar yields an op-
tical metric equivalent to spatially flat ACDM with effective density parameters (£2p, 2y, Q) >~
(0.05,0.25,0.7), matching Planck CMB distances within 20 [46].

These results are sufficient to regard DFD as an observationally consistent scalar-refractive frame-
work for gravity, at least at post-Newtonian order. A companion paper (in preparation) presents
the full dataset fits and residual analysis.
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G Three-Generation Topological Counting

The internal flux quanta (k3, k2, q1) on (CP2,83,U(1)) determine the number of chiral zero modes
via the index theorem. The minimal anomaly-free solution with nonvanishing index in all sectors
is (1,1, 3):

Ngen = ks ko q1 = 3.
Alternative distributions such as (2,1,1) or (1,2,1) either overproduce doublets or violate the
SU(3)2—U(1) cancellation. Hence (1,1, 3) is the smallest integer set preserving anomaly freedom
and yielding three identical families. This structure is topologically robust: a single flux quantum

in each non-Abelian factor with triple charge in the Abelian fiber naturally produces the observed
triplication of generations.

H Macro—Derivation of the Internal Fiber and Observable Dictio-
nary

Objective. Starting only from DFD’s assumed ingredients consistent with prior analyses—lossless
reciprocal medium with refractive index n = e¥, rotational isotropy (SO(3)), and analyticity in
Vi)—we show that a complex unitary internal mode space and the minimal (3,2,1) degeneracy
pattern emerge without additional microphysical postulates. This appendix also maps the scalar
response functions (mg, m1, mg) to laboratory observables and clarifies what is now derived versus
what remains open.

H.1 Complex unitary internal space from lossless reciprocity

In any lossless, reciprocal electromagnetic band, the field energy can be written

€= Fl M,(4,V¢)Fy, My =M},
o=+

where F1 = E+4i Z(¢))B are the Riemann-Silberstein vectors with local impedance Z (1) = Zpe ™.
Each helicity sector o = =+ therefore spans a complex 3-dimensional vector space with unitary frame
freedom U, € U(3). Thus the unitary internal fiber follows directly from Maxwell + reciprocity +
DFD optics, requiring no separate assumption.

H.2 Unique SO(3)—covariant first-order constitutive form

With n = Vi /|V|, the most general Hermitian, SO(3)—covariant, analytic operator to first order
in |V is

Mo = mo() -+ ma(0) (887 — ) + 0 ma(as) Ja+ O(VHP), (12)

where J; is the generator of rotations about fi. The coefficients have clear physical meaning: mg
(isotropic response), m; (uniaxial even-parity distortion), and mq (helicity-odd duality mixing).

11



H.3 Baseline (2,2,2) degeneracy across helicities

Diagonalizing M, in the basis {ex, e3 = n} gives eigenvalues

AL =mg+ 3mq, (13)
)‘T,:l:#f = mgy — %ml + g may. (14)
Across helicities, reciprocity enforces pairings A7 + = Ar— _, Ar— 4 = A7 4 _, so the total six-

mode spectrum forms a baseline (2,2, 2) multiplicity with stabilizer U(2)3.

H.4 Minimal enhancement to (3,2,1)

To support two simple non-Abelian factors and one Abelian factor, the stabilizer must enlarge to
U(3) x U(2) x U(1). The smallest symmetry step achieving this is

m1 =mg =0 for one helicity (say o = +),

which renders that helicity isotropic (3-fold). The opposite helicity retains its generic uniaxial (2, 1)
splitting. This minimal enhancement reproduces the (3,2, 1) partition identified variationally and
topologically in the Minimality Lemma.

Proposition 3 (Minimal enhancement from U(2)3 to U(3) x U(2) x U(1)). Within the family (12),
setting (m1,ma) = (0,0) in a single helicity sector yields the smallest codimension that produces two
simple unitary factors and one Abelian factor. Any alternative route requires additional conditions
or higher-order corrections.

Why this fixed point is natural. Reciprocity enforces mys — —mso under ¢ — —o, while my
is helicity-even. Thus one helicity can sit at the symmetric fixed point mi1=mo=0 to first order
without fine-tuning—it is a stable point of the symmetry expansion. Higher orders (O(|V1|?)) will
indeed perturb this pattern, but (3,2,1) is the first structure permitted by symmetry, defining the
low-energy limit just as spherical harmonics start with ¢=0.

H.5 Berry connections and gauge stiffness
Local frame variations U, of the triplet, doublet, and singlet subspaces yield Berry connections
A —iutau.,  r=1{3,2,1},

taking values in su(3), su(2), and u(1), respectively. Frame-stiffness energy 1> r, tr(Fi(;)Fi(;))
1/2

then gives the Yang Mills action with couplings g, ~ s, ’° and propagation speed ¢; = ce™ Y.

H.6 Observable dictionary for (mg, mq, ms)

1. Isotropic drift (mg) — determines the fractional cavity—atom slope after removing the
kinematic redshift: 5
Y 54 + Oylnmi 6.
Veav
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2. Uniaxial anisotropy (m;) — appears as helicity-even birefringence: AAp_7 = mq, diag-
nosed by species-ordering of atomic transitions.

3. Duality-odd response (mg) — produces helicity-odd frequency drifts AAy | o —AXp_ , =
20me, and directly controls the non-Abelian holonomy phase in the photonic test.

These three observables provide a complete falsification triad for the macroscopic ¥-medium de-
scription.

H.7 Derived vs. open points

Derived (macro-level):

e Complex unitary internal fiber from DFD + Maxwell reciprocity.
e Unique SO(3)—covariant first-order constitutive tensor.
e Baseline (2,2,2) spectrum and minimal (3,2,1) enhancement.

e Emergent SU(3) x SU(2) x U(1) Berry connections and Yang-Mills action.
Open (micro-level):

e Determining {mg, m1, ma2}(¢) and {k,(¢)} from a fundamental {)-matter Lagrangian.

e Connecting fermionic matter fields to the same internal fiber: presently a conjecture supported
by bundle consistency, not a derivation.

e Quantifying higher-order (|V|?) corrections that may further split or mix the blocks—these
enter at higher energies and do not affect the leading gauge symmetry.

Summary. Within the macroscopic DFD 4+ Maxwell framework, reciprocity and isotropy require
a unitary complex internal space whose first-order constitutive form is (12). The (3,2, 1) structure
arises naturally as the first symmetry-allowed enhancement of the generic U(2)? spectrum, giving
the minimal non-Abelian content consistent with lossless optics. Higher-order corrections may
refine but cannot remove this base pattern. Thus, conditional on DFD’s empirical validity, the
SU(3) x SU(2) x U(1) gauge structure follows as a low-energy inevitability rather than a free
hypothesis.

Scope of falsification. It should be emphasized that the results of this appendix concern a con-
ditional extension of DFD. If future experiments were to falsify the predicted internal-mode pattern
or its gauge correspondence, such an outcome would not invalidate the gravitational and optical
predictions of the DFD scalar itself. The core DFD framework—a refractive-index description of
gravity and light propagation—remains an independent, empirically testable theory regardless of
whether the emergent-gauge sector is realized in nature.
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I Micro-to-macro derivation of M,

Setup. Introduce auxiliary polarization and magnetization fields P, M with

Lem = 2e0e® E? — 1ugte ™Y B — E-P — 5 'B-M, (15)
Linat = sPIXp (W) P+ iM X, () M + Laq(¢) (2-P)* — Lay (4) P2 (16)
+ 361(¥) (0 M)? — 181 () M? + y(¢) &2+ (E x B), (17)

with n = V4 /|V¢|, and where losslessness and reciprocity enforce XI_DI, X]\_/[1 Hermitian, and the
Tellegen-like term 7 odd under duality (no absorption). The quadratic form is the most general
analytic, SO(3)-covariant, reciprocal one to first order in [V)|.

Integrating out (P,M). Solving 6L/0P = §L/6M = 0 yields linear-response P = xp(¢) E +
O(IVY[), M = xum(¥) B + O(|V]). Back-substitution gives an effective electromagnetic energy
E=>, F M,F, in the Riemann-Silberstein basis Fx = E + iZ(y)B, with Z(¢)) = Zoe ¥, and

Ma = mo(@) +ma(9) (A8 = 5 ) + o ma(w) Ja + O(VuP), (18)
where the coefficients are derived functions of the micro couplings:
mo(¥) = 4|20 + g e | + Strxp(w) + S trxu (), (19)
m1(¥) = Floa(¥) + Br(¥)] + 3 [Xp — XPL + Xar)| — XL (20)
ma(¥) = (V) + 3 0yl Z(8) - [e0e® — pug'e™] (21)

with ||, L the components along and orthogonal to n. Reciprocity enforces the helicity-odd sign of
my. Thus the first-order constitutive form and the triplet {mg, m1, mo} follow from integrating out
(P, M) under the stated symmetries; no phenomenological postulate is needed.

J Why three generations is the minimal consistent choice

Proposition 4 (Cubic-root spin® selection on CP?). Let H € H?(CP?;Z) generate H?, and K be
the canonical bundle with c1(K) = —3H. Chiral fermions on CP? require a spin® structure with
determinant line bundle L such that c¢1(L) = H mod 2. If hypercharge U(1)y is realized by twisting
by L, the requirement that all hypercharges be integrally quantized on all SM representations while
mixed anomalies vanish is satisfied by the minimal choice

L = K — ci(L) = —H. (22)

Sketch. (i) Spin® on CP? demands ¢1(L) = wa(T) = H mod 2.

(ii) Mixed anomalies SU(3)?—U(1) and SU(2)*—U(1) are proportional to [ups c1(L) A Tr F?;
integrality across all SM reps and the Standard-Model hypercharge lattice imply ¢1 (L) is a fractional
root of K.

(iii) The smallest such root consistent with (i) is the cubic root: ¢1(L) = —H so that 3¢1 (L) = ¢1(K).
This choice makes all relevant Chern—Weil integrals integers on SM reps and cancels the mixed
anomalies generation-by-generation. O
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Corollary 5 (Minimal flux triple). With k3 = ka =1 (one unit of non-Abelian flux each) and the
cubic-root choice above, the U(1) flur quantum is fixed to q1 = 3 in the index normalization. Hence
the generation count from the index scales as

Ngen - ‘k?; k2 Q1! =3

and this solution is the unique minimizer of the positive-definite quadratic energy E = ak%—i—bk%—}—cq%
subject to the spin® and anomaly constraints. Any alternative with g1 > 6 or (ks,ka) > (2,1) has
strictly larger E.

K Kubo formulas and bounds for the gauge stiffnesses

Kubo representation. Let Ji(r) be the Noether current density that generates local frame rota-
tions in the r € {3,2,1} subspace (triplet, doublet, singlet). In thermal equilibrium,

1 T ' N ] —k- I8 T
fro= lim lim — ReGYjw k), GYj(wk) = —i / d'z @RI (), T ), (23)

(no sum on 4). Thus k, are calculable spectral integrals, not free inputs.

Group-metric bounds. Let G, be the Lie algebra with Killing metric K (Z) and let Ja(r) denote

a
the corresponding microscopic charge densities. Positivity of the spectral measure and Cauchy—Schwarz

give
* dw
)‘(mrl)n Xr S Kr S Aggmx Xrs Xr = / . p(r) (w)7 (24)
0 W
where A7) are the smallest/largest eigenvalues of K (") in the representation realized by the

min / max
internal modes, and p(") the total spectral density of J ("), If the same internal spectrum feeds all
three sectors up to group-theory weights, then

ks CalSUB)] 3 ke InndlSU2)]

ke CalSU?2)] 2 K1 vg
with C'4 the adjoint Casimir and If;,q the Dynkin index in the fundamental, and Y{ the funda-
mental U(1) charge unit set by the cubic-root condition above. This yields a computable target for
sin? Oy = K2/ (K1 + k2) at the emergent scale.

(25)

Sum rule (low-energy). If the internal medium is approximately isospectral across the three
subspaces,

* dw
K1+ Ko + kg = / ETl"intP(W) + O(|Vy[?), (26)
0

so that ratios are set dominantly by group metrics; RG running to laboratory scales then follows
standard S-functions.

Discussion

Internal space: fiber bundle, not extra dimensions. CP? x S3 is an internal mode fiber
(like spin), not a spatial compactification. No KK towers. Berry holonomies are measured as
mode-mixing matrices (Appendix C). This coexists with DFD’s flat R3.
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Calculability of k.. ¢, ~ Kk, 2 with k- determined by internal-mode spectra and dual-sector
energy partition. In practice {g1, g2, g3} (equivalently {k,}) are renormalized inputs, as in the SM.
Tiny 1/-dependences (~ 107!2-1071* seasonally) are subdominant today.

Propagation speeds and confinement. All gauge excitations originate from internal frame
rotations that propagate through the 1)-medium at the local phase velocity ¢; = ce™¥. Massive
vector bosons (e.g., W, Z) acquire subluminal group velocities due to their effective masses from the
Higgs alignment field, just as in standard electroweak theory. QCD confinement is not geometrically
enforced here; it emerges through the usual renormalization-group running of the SU(3) stiffness
k3(p), which increases at low scales and leads to color flux-tube formation analogous to standard
lattice results.

Higgs origin. h is the alignment field of the C? block; V' (h;) = A(|h|? — v%(¢))? arises from
integrating out heavy frame modes and small anisotropies; weak t-dependence of v follows from
dual-sector optics. Custodial relations follow at leading order.

Photonic holonomy: proof-of-principle, not proof-of-origin. Appendix C shows that non-
Abelian Berry connections can arise from i-textures. The SM connection requires pattern tests: if
archival clock data exhibit (i) d1nu/dIna ~ 22-24 (sign-matched), (ii) species ordering, and (iii)
triangle closure, while the photonic commutator satisfies C' # I with the predicted phase structure,
then the Berry-bundle mechanism is not merely possible but empirically operative. Failure of either
falsifies the hypothesis.

Environmental amplitudes. Detectability depends on available i)-gradients. For the Earth—Sun
potential variation A ~ 3 x 10719, expected fractional drifts are below 10~3. To reach visible
1071610717 effects in current optical clocks, one would need potential differences A®/c? ~ 1077,
achievable between Earth and Jupiter or via deep-space optical links (e.g., LISA Pathfinder class).
Thus, existing data already constrain i uniformity, while future interplanetary baselines could
directly probe the predicted drifts.

Immediate experimental pathways. Three parallel tracks can test this framework in the near
term: (1) archival analysis of co-located optical /hyperfine clock comparisons (PTB, NIST, SYRTE
data 2015-present) for species ordering and triangle closure; (2) targeted search for dlna # 0 in
quasar absorption spectra to trigger the hadronic/EM ratio test [29, 30, 31]; (3) photonic holonomy
fabrication at existing fs-laser facilities (feasibility: ~6 months, demonstration: ~18 months). Null
results in all three would not disprove DFD gravity but would rule out this specific gauge-emergence
mechanism.

Positioning: Predictive Ansatz and Testability

The internal-bundle construction should be read as a predictive closure ansatz: if the 1-medium
realizes the minimal stable degeneracy pattern of Sec. 2.1, then the Standard Model gauge group
follows as its unique Berry geometry (Lemma B.1), with couplings from frame stiffness and elec-
troweak mixing from stiffness ratios. This is not a claim that all SM parameters are derived here;
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rather, it is a claim that the gauge structure and its empirical fingerprints (clock-pattern ratios
and non-Abelian holonomies) are inevitable consequences of the minimal internal geometry. The
forthcoming pattern tests and the holonomy experiment decide the ansatz on its merits. Scope.
While the present work derives gauge structure, dynamics, EW mixing, and anomaly-consistent
matter conditional on the minimal internal geometry, we present this as a predictive ansatz. The
decisive evidence must come from the parameter-free patterns in co-located clock data and the
non-Abelian holonomy commutator; failure of either falsifies the mechanism irrespective of broader
DFD claims.

Related Work

Noncommutative geometry. Connes’ spectral action derives SM-like structures from almost-
commutative spectral triples [32, 33]; we instead use Berry connections on a physical mode bundle,
and our internal manifold is selected by minimality + anomaly freedom (Lemma B.1), with direct
holonomy tests.

String compactifications. Compactifications on Calabi—Yau manifolds and D-brane fluxes pro-
duce SM groups in higher dimensions [34, 35]. Our selection principle is orthogonal: minimal com-
plex degeneracy in a fiber bundle (no extra spatial dimensions), with testability through -linked
precision metrology.

Emergent gauge in condensed matter. Non-Abelian Berry connections are ubiquitous in
degenerate bands and topological photonics [5, 27, 28]. Our novelty is tying this mechanism to a
gravitationally measured scalar and deriving SM symmetry, anomaly freedom, EW breaking, and
falsifiable patterns in atomic data.

Limits, Open Mechanism, and Roadmap to Derivation
The present construction unites two complementary levels of description:

1. DFD as an empirically consistent scalar field framework for gravity and optics. Its
scalar v is currently consistent with gravitational and optical data across Solar System, galac-
tic, and cosmological regimes (Appendix F). This establishes 1) as an empirically constrained,
physically real field—not a mathematical abstraction.

2. Gauge emergence as a conjectured internal-sector manifestation of the same field.
If 1) modulates matter’s internal response tensor £(¢), then minimal degeneracy of that tensor
yields the Standard Model’s gauge structure as its Berry connection.

At present, the bridge between these levels is postulated, not derived. This section clarifies precisely
what is assumed, what follows, and how the gap can be closed by future work.
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Explicit statement of the working conjecture

We conjecture that the same scalar field v responsible for gravitational refraction also modulates
the internal response of matter, introducing a small traceless anisotropy,

(¢, x) = coe® ™ + i, x)],  Tri=0.

This postulate—Eq. (4)’s starting point—is not implied by the DFD action as currently formulated.
It represents an effective coupling between ¢ and the collective degrees of freedom of quantum
matter. All higher-level results (degeneracy pattern (3,2, 1), frame stiffness k,, Yang—Mills form,
and pattern tests) are conditional on this coupling existing in nature.

Physical motivation

Such a coupling is physically plausible rather than arbitrary. In DFD, ¢ controls the local refractive
index n = e¥ that determines the propagation of light and matter waves. Any medium whose
internal polarization or binding energy depends on n will exhibit a i-dependent dielectric tensor.
In condensed-matter language, 1 acts as a scalar order parameter that can shift microscopic band
structures, creating near-degenerate internal modes. The resulting Berry connections are then
a generic mathematical consequence of adiabatic transport in that degenerate manifold. What
remains to be shown is that such degeneracy is inevitable, not merely possible.

What is not yet derived

We emphasize the following points:

e The DFD Lagrangian does not yet include an explicit y)—matter coupling term that generates
£(v) from first principles.

e The number and structure of internal degeneracies are deduced from minimality and symme-
try arguments, not from a microscopic calculation.

e The (3,2,1) pattern and stiffness ratios k, are therefore conditional predictions of the con-
jecture, not consequences of DFD’s current gravitational sector.

Toward a microscopic derivation

Closing this gap requires extending DFD’s action to include matter-field couplings of the schematic
form

Ling = f() Ty T 4 g(40) Fuy F* + h(1) (B0)? + ...,

where f, g, h encode -dependence of elastic, electromagnetic, and fermionic sectors. Linearization
around 1) = 1) yields a response tensor & = £o( + 7)) whose eigenvalue structure can then be com-
puted explicitly. If the lowest nontrivial stationary point indeed yields a (3,2, 1) block pattern, the
conjecture becomes a derivable consequence of the field equations rather than a phenomenological
closure.
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Predictive hierarchy and falsifiability

The separation between DFD gravity and gauge emergence is not a weakness but a built-in hierarchy
of falsifiers:

1. DFD falsification: failure of cavity—atom ratio slopes, interferometric T° terms, or galactic
a4 correlations invalidates the scalar v entirely.

2. Gauge falsification: success of DFD but absence of the predicted coupling-ratio patterns
(61npu/dIna # 22-24 or failure of triangle closure) rules out v as a universal internal driver.

3. Holonomy falsification: success of both but null optical holonomy would rule out the
non-Abelian geometry mechanism.

Each layer is independently testable; none rely on unobservable assumptions. This hierarchical
structure converts current theoretical uncertainty into experimental opportunity.

Conceptual summary

The present framework should therefore be read as follows:

DFD establishes a measurable scalar field 1 that governs gravity and optical metrology.
We conjecture that this same field also modulates the internal structure of matter, giv-
ing rise to degenerate mode manifolds whose Berry connections reproduce the Standard
Model gauge group. This conjecture is falsifiable through specific parameter-free ratios
and holonomy experiments.

The logical separation between DFD and gauge emergence thus preserves scientific integrity: the
first is tested physics; the second is a predictive hypothesis built upon it. Should future derivations
or experiments confirm the existence of i-dependent internal degeneracy, the connection would
represent a genuine unification of gravitation and gauge structure within a single scalar field theory.

Technical Clarifications and Remaining Open Questions

Aquadratic action is tightly constrained. Requiring convexity (F” > 0) and the boundary
limits F/(X)—1as X — oo and F'(X)oc X'/ or X as X — 0 restricts the admissible y(z) to narrow,
physically motivated families. The two forms used here, u(z) = /(1 + ) and p(z) = z/v1 + 22,
are minimal convex interpolators between these limits. The single calibration of a, on RAR data
then propagates as a parameter-free prediction to other regimes.

LPI coefficients are bounded, not freely fit. The coefficients {\n, A¢, Ap} are constrained by:
(i) composition-dependence bounds (e.g., MICROSCOPE), (ii) the dual-sector constraint e u = 1/c?
(opposite-sector responses), and (iii) natural O(1) scaling. The n >3 species plane-fit in sensitivity
space {K'} is therefore a parameter-independent test: if measured slopes {s;} do not lie on one
affine plane, the framework is falsified without prior knowledge of the A’s.
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Interferometer gain is computed, not dialed. The estimator gain G in the T matter-
wave test is fixed by instrument geometry: large momentum transfer order, baseline, and rotation
reversals. For a given device, G follows from known design parameters. The microscopic coefficient
Bprp ~ 10716 rad/s? is fundamental; the effective estimator sensitivity Beg at T ~ 1 s reflects
parity/rotation isolation and common-mode rejection.

Cosmology scatter bound is a hard test. Using Poisson-kernel smoothing over ¢~ 300 Mpc
sightlines with L.~ 10 Mpc and observed o5~0.5 yields oay ~ 10~° and an induced SN dispersion
< 0.02 mag. Any robust excess scatter (or correlated residuals with foreground structure) at the
2 0.05 mag level falsifies the framework with current data.

Strong-field closure is explicit. The DFD-TOV system together with the transverse-traceless
sector defines a complete initial-value problem. In the |V)|> a4 limit, 41— 1 recovers GR behavior;
EHT and NICER already constrain the allowed high-v) closure. The text provides a concrete shoot-
ing algorithm; numerical tables belong in a data supplement and are straightforward to produce.

On the gauge-emergence bridge. The internal-mode mechanism (Berry connections on a
(3,2,1) degeneracy) remains a conditional extension of DFD. Appendix H shows that, under loss-
less reciprocity and isotropy, Maxwell plus a refractive medium n = e¥ forces a unitary complex
internal space and a first-order constitutive form whose minimal enhancement yields (3,2,1) and
hence SU(3) x SU(2) x U(1). What is not yet derived is the microscopic origin and absolute scales
of the response functions {mg, m1, mo}() and stiffnesses {x,}. Accordingly, this bridge is testable
by: (i) the plane-fit and species-ordering patterns in co-located clocks, (ii) helicity-odd drifts tied
to mg, and (iii) a tabletop non-Abelian holonomy that exhibits [Ugy(a), Usy )] ¥

Appropriate reading and next steps. DFD (gravity/optics) is a constrained, single-scale
framework with multiple presently feasible falsifiers: LPI plane-fit, 7% parity test, and cosmology
scatter/correlation. The gauge-emergence layer is an additional, falsifiable hypothesis contingent
on DFD; its near-term probes are the parameter-free clock patterns and the holonomy experiment.
Positive outcomes on the base tests make the bridge compelling; null results cleanly exclude it
without prejudicing DFD’s gravitational sector.

Scope protection. Falsification of the gauge-emergence extension does not falsify DFD gravity.
The scalar-refractive predictions and their tests stand independently; only if the base DFD tests
fail does the gauge layer necessarily fall with them.

Conclusions

We derived the SM gauge group as the structure group of an internal 1)-medium bundle; obtained
Yang—Mills dynamics from frame-stiffness; explained EW mixing as a stiffness ratio; placed matter
with anomaly-free charges; proved CP? x S2 minimality; designed a tabletop non-Abelian holonomy;
and stated parameter-free pattern tests. DFD’s scalar is thus consistent with known gravity /optics
and naturally suggests the minimal internal geometry for the SM and yields concrete, near-term
falsifiers.
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Positioning. The framework presented here should be viewed as a predictive closure ansatz: if
DFD gravity is correct, then CP? x S3 emerges as its minimal consistent internal geometry yielding
the Standard Model gauge structure. Whether nature in fact realizes this mechanism is an empirical
question, to be decided by the pattern tests and holonomy experiments described above.
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