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Penrose has argued that a quantum superposition of mass distributions leads to a structural in-
consistency: in general relativity, each branch would source a distinct spacetime geometry, whereas
quantum mechanics allows only a single state until collapse. We show that Density Field Dynam-
ics (DFD), a scalar-field completion of Einstein’s 1911–12 variable-c program, avoids this paradox
entirely. In DFD there is no manifold branching: superposed mass distributions source a single

classical (c-number) refractive field ψ, which governs both light (n = eψ) and matter (a = c2

2
∇ψ).

In the weak-field linear regime (µ → 1), ψ is the convex sum of the branch fields; in the full quasi-
linear regime, monotonicity of the crossover function µ ensures existence and uniqueness of a single
solution. Thus DFD is structurally compatible with quantum superposition, unlike GR, and the
decisive discriminator remains laboratory testability: the co-located cavity–atom redshift compar-
ison at two altitudes, where GR predicts zero slope and DFD predicts a geometry-locked slope of
O(∆Φ/c2) ∼ 10−14 per 100 m.

I. INTRODUCTION

Penrose has long emphasized a tension between general relativity (GR) and quantum mechanics (QM) [1, 2]. If
a macroscopic object is placed in spatial superposition, GR demands that each branch source its own spacetime
curvature, while QM maintains only a single quantum state until measurement. This “two spacetimes vs. one Hilbert
space” contradiction underpins Penrose’s proposal that gravity induces wavefunction collapse.

Density Field Dynamics (DFD) [13–15] replaces curved spacetime with a single classical (c-number) scalar refractive

field ψ(x). Photons propagate with index n = eψ, matter accelerates as a = c2

2 ∇ψ, and ψ obeys the quasilinear elliptic
equation

∇·

[
µ

(
|∇ψ|
a⋆

)
∇ψ

]
= −8πG

c2
(
ρ− ρ̄

)
, (1)

with µ→ 1 in the weak-field regime (and a⋆ the characteristic deep-field acceleration scale). Normalization reproduces
GR’s weak-field optical tests [3], while the µ-family enforces scale symmetry, ellipticity, and convex energy density [9].

II. SUPERPOSITION SOURCES IN DFD

Let the quantum state of a mass distribution be |Ψ⟩, with density operator ρ̂(x). The effective source entering (1)
is the expectation value

ρeff(x) = ⟨Ψ|ρ̂(x)|Ψ⟩. (2)

For a superposition of two localized packets |L⟩, |R⟩ with |Ψ⟩ = a|L⟩+ b|R⟩,

ρeff ≃ |a|2ρL + |b|2ρR + 2Re(a∗b ρLR) , (3)

where the interference term ρLR is exponentially suppressed for well-separated packets. In the linear (Poisson) regime
(µ→ 1), the field solution is

ψ ≃ |a|2ψL + |b|2ψR, (4)

a convex sum of branch fields. In the full nonlinear regime, monotone µ ensures uniform ellipticity; existence and
uniqueness follow by variational methods (Sec. VII). Thus there is always a single ψ field—a weighted combination
of branch contributions—ensuring no manifold branching.

A. Semiclassical sourcing (but not semiclassical GR)

DFD sources a classical scalar field ψ by ρeff = ⟨ρ̂⟩, yet the geometry is never promoted to an operator; there is

no ĝ. This is not the semiclassical Einstein equation Gµν = 8πG⟨T̂µν⟩. Instead, the optical metric for light is n = eψ
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FIG. 1. Representative crossovers: linear for x≫1, scaling µ∼x for x≪1. Both preserve a unique classical ψ.
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FIG. 2. Illustrative ψ-profiles for two separated packets in 1D. Only the convex-sum field exists in DFD.

(Euclidean background with refractive structure), and matter follows a = c2

2 ∇ψ. Hence no operator-valued geometry
arises, and Penrose’s paradox does not materialize.

B. Linear vs. Nonlinear Regimes

DFD’s µ(x) crossover unifies two limits with a single PDE and a single ψ: (i) the high-gradient (solar-system) regime
µ→ 1, where the equation reduces to a linear Poisson problem; and (ii) the deep-field (galactic) regime µ(x) ∼ x,
which yields scale-free behavior |∇ψ|∝1/r and flat rotation curves. In both regimes ψ is a classical field determined
by ρeff ; no operator-valued geometry arises.

C. Worked example: superposed grain of sand

Consider m∼10−7 kg in a spatial superposition with branch centers separated by d∼1µm. In GR, two geometries
are implicated. In DFD, ρeff ≈ 1

2 (ρL + ρR) and the weak-field solution is ψ = 1
2 (ψL + ψR) by (4). The acceleration

field a = (c2/2)∇ψ and optical index n = eψ are single-valued; no paradox arises.

III. QUANTUM EVOLUTION AND CONTINUITY

Matter wavefunctions evolve with

iℏ∂tΨ = − ℏ2

2m
∇·

(
e−ψ∇Ψ

)
+mΦΨ, Φ = − c2

2 ψ. (5)

Define the current

J =
ℏ

2mi
e−ψ

(
Ψ∗∇Ψ−Ψ∇Ψ∗). (6)
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TABLE I. Illustrative error budget for ∆R/R at the 10−14 per 100 m level.

Systematic Target (frac.) Control handle

Cavity dispersion (dual-λ) ≲ 3× 10−15 Dual-wavelength bound
Cavity elastic sag / flips ≲ 3× 10−15 180◦ orientation flips + model
Atom transition sensitivity ≲ 3× 10−15 Co-trapped species calibration
Comb transfer noise ≲ 1× 10−16 Stabilized links + counters
Thermal gradients / birefringence ≲ 3× 10−15 Active stabilization; polarization checks

Multiplying (5) by Ψ∗ and subtracting the conjugate equation yields

∂t|Ψ|2 +∇· J = 0, (7)

so probability is conserved. Equivalently, the kinetic operator can be written

− ℏ2

2m
∇·(e−ψ∇) =

1

2m
p̂ 2
ψ, p̂ψ ≡ −iℏ e−ψ/2 ∇ e−ψ/2, (8)

which is self-adjoint on the natural domain (e.g. square-integrable functions with appropriate boundary conditions)
under the flat measure. For bounded domains, impose Dirichlet or Neumann conditions on Ψ; for R3 require Ψ,∇Ψ ∈
L2 with e−ψ bounded and positive.

IV. LABORATORY DISCRIMINATOR

While the theoretical resolution is complete, experimental verification remains the decisive test of which theory
nature follows. In a nondispersive band, an evacuated cavity with frequency fcav ∝ c1/L and a co-located atomic
clock fat respond differently to ψ. Across an altitude change ∆h,

∆R

R
= ξ

∆Φ

c2
, R ≡ fcav

fat
. (9)

In GR, ξ = 0; in DFD, ξ ≃ 1 [18]. For Earth’s surface,

∆R

R
≈ 1.1× 10−14 per 100 m. (10)

This level is achievable with state-of-the-art optical metrology [7, 8]. Matter-wave interferometry provides a second
discriminator: DFD predicts a T 3 phase scaling in long-baseline atom interferometers, yielding a ∼ 2 × 10−11 rad
signal at T = 1 s, within reach of current facilities [17].

A. GLS 4→3 slope extraction (sector-resolved)

Using two cavity materials (e.g. ULE, Si) and two atomic species (e.g. Sr, Yb), form four ratios R(M,S) = f
(M)
cav /f

(S)
at

at two altitudes. The observable slopes are ∆R/R = ξ(M,S) ∆Φ/c2 with ξ(M,S) = αw − α
(M)
L − α

(S)
at . A generalized

least squares (GLS) fit over the four slopes identifies the three combinations (δtot, δL, δat) with internal consistency
and covariance control:

δtot ≡ αw − αULE
L − αSr

at , δL ≡ αSi
L − αULE

L , δat ≡ αYb
at − αSr

at . (11)

GR predicts all three δ’s vanish; DFD predicts a nonzero δtot in a nondispersive band.

V. DISCUSSION

A. Collapse models (GRW/CSL) vs. DFD

GRW and CSL add stochastic, non-unitary collapse terms to resolve the GR/QM tension [6]. DFD requires no
such postulates: the background is a classical c-number field ψ, so there is never more than one geometry to begin
with. Penrose’s structural paradox is absent without modifying the Schrödinger equation stochastically.
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FIG. 3. Sector-resolved cavity–atom LPI test: GR predicts zero slope, DFD predicts ∆R/R ∼ 10−14 per 100 m.

TABLE II. How different approaches treat superposed mass distributions.

Approach Geometry in superposition Resolution mechanism

GR + QM Two spacetimes Structural paradox (Penrose)
GRW/CSL One spacetime Stochastic collapse postulate
Decoherence Two spacetimes Environment hides interference
DFD One ψ field Convex-sum sourcing; unique PDE

B. Decoherence vs. DFD

Environmental decoherence suppresses interference but does not remove the two-geometry issue in GR. DFD never
produces branch geometries: superposed sources create one ψ fixed by ρeff . Thus decoherence is relevant to experi-
mental visibility, not to resolving a structural inconsistency.

C. Cosmological implications

The same optical-metric mechanism impacts cosmography: line-of-sight inhomogeneities bias optical distances,
inducing a directional H0 anisotropy tied to ψ-weighted density gradients [13]. This links laboratory falsification to
large-scale observables.

D. Comparison with other approaches

VI. PENROSE PARADOX VS. DFD (SCHEMATIC)

GR

L R

“two spacetimes”

Inconsistent superposition

DFD

L R

convex sum

Single ψ: |a|2ψL + |b|2ψR

FIG. 4. Schematic contrast. In GR, superposed matter implies two geometries (paradox). In DFD, the scalar ψ is unique,
formed from the weighted density distribution.
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VII. WELL-POSEDNESS (EXISTENCE & UNIQUENESS)

Theorem (well-posedness). Let µ : R+→R+ be continuous, monotone increasing, and satisfy 0 < µmin ≤ µ(·) ≤
µmax < ∞ on compact subdomains of interest. Given ρ ∈ L2

loc and suitable boundary conditions, Eq. (1) admits a

unique weak solution ψ ∈W 1,2
loc .

Sketch. Define the energy functional E[ψ] =
∫
d3xF(|∇ψ|)− 8πG

c2 ψ(ρ− ρ̄) with F ′(y) = µ(y/a⋆)y. Monotonicity of
µ implies convexity of F and coercivity on appropriate Sobolev spaces. The direct method of the calculus of variations
yields a minimizer; uniqueness follows from strict convexity [9]. For µ→1 one recovers the linear Poisson theory; for
µ∼x deep-field scaling holds.

VIII. CONCLUSION

Penrose’s paradox arises only if mass superpositions imply multiple geometries. In DFD, superpositions source one
classical ψ field, ensuring consistency with quantum mechanics. The debate moves from philosophy to experiment:
a co-located cavity–atom comparison at two altitudes, together with matter-wave interferometry, can decide between
GR and DFD with current precision.

Appendix A: Continuity and Hermiticity (derivation details)

Starting from (5), multiply by Ψ∗ and subtract the conjugate equation:

Ψ∗iℏ∂tΨ−Ψ(−iℏ∂tΨ∗) = − ℏ2

2m

[
Ψ∗∇·(e−ψ∇Ψ)−Ψ∇·(e−ψ∇Ψ∗)

]
. (A1)

Using ∇·(fA) = f ∇· A + ∇f · A and rearranging gives ∂t|Ψ|2 + ∇· J = 0 with J as in (6). Writing the kinetic
operator as 1

2m p̂
2
ψ with p̂ψ = −iℏe−ψ/2∇e−ψ/2 shows self-adjointness on the natural domain (Dirichlet/Neumann for

bounded regions; L2 decay at infinity).

Appendix B: Existence/Uniqueness (variational details)

Let A(ψ)=∇· (µ(|∇ψ|/a⋆)∇ψ). Assuming µ monotone and bounded away from zero, A is uniformly elliptic. The
functional E[ψ] is convex and coercive, admitting a minimizer; Gateaux differentiability yields (1) in weak form; strict
convexity implies uniqueness [9].
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