Cover Letter / Preface: Why Density Field Dynamics is Fundamental Physics

Dear Editor / Reader,

This note accompanies my submission to clarify the conceptual foundation of *Density Field Dynamics (DFD)*. DFD is not a phenomenological patch to General Relativity (GR), but a theory derived from a *single physical postulate*:

Postulate. In a nondispersive frequency band, the one-way speed of light varies with local energy density via a scalar field ψ , while every two-way (round-trip) measurement of c remains exactly constant.

This differs critically from prior variable-speed-of-light (VSL) theories, which typically altered both one-way and two-way speeds, conflicting with precision metrology. By restricting variation to the one-way speed and requiring a verified nondispersive band, DFD remains consistent with all existing null tests of special relativity and Maxwellian electrodynamics.

From this single assumption, the framework follows:

1. Optical metric and refractive index. Light propagates as if in an optical metric

$$d\tilde{s}^2 = -\frac{c^2 dt^2}{n^2(\mathbf{x}, t)} + d\mathbf{x}^2,$$

with $n = e^{\psi}$ fixed by additivity of successive slabs. Calibration to GR's weak-field optical tests (deflection, Shapiro delay, gravitational redshift) sets the normalization, yielding precise agreement within current experimental bounds.

2. Matter acceleration. Consistency between cavity redshift $(\delta f_{\rm cav}/f_{\rm cav} = -\delta \psi)$ and atomic redshift $(\delta f_{\rm at}/f_{\rm at} = -\Delta \Phi/c^2)$ requires

$$\Phi = -\frac{c^2}{2}\psi, \quad \mathbf{a} = -\nabla\Phi = \frac{c^2}{2}\nabla\psi.$$

3. Field equation and crossover μ . The unique isotropic, stable action is

$$S_{\psi} = \int d^3x \, dt \left[\frac{a_{\star}^2}{8\pi G} W \left(\frac{|\nabla \psi|^2}{a_{\star}^2} \right) - \frac{c^2}{2} \psi(\rho - \bar{\rho}) \right],$$

which yields

$$\nabla \cdot \left[\mu(|\nabla \psi|/a_{\star}) \, \nabla \psi \right] = -\frac{8\pi G}{c^2} (\rho - \bar{\rho}), \quad \mu = W'.$$

Its limits follow structurally, not by assumption: high-gradient $\mu \to 1$ gives the Newtonian limit; low-gradient requires $\mu \sim x$, producing flat galactic rotation curves.

Consequences:

- Agreement with GR's precision tests (perihelion, deflection, Shapiro delay, GPS) within current experimental bounds.
- Flat qalactic rotation curves and Tully–Fisher scaling without dark matter.
- Cosmological bias: line-of-sight H_0 anisotropy correlated with density gradients.

- Strong fields: optical horizons and photon spheres emerge from extremizing n(r)r.
- Gravitational waves: a minimal TT sector reproduces the quadrupole flux, with deviations mapped to ppE coefficients.
- Laboratory discriminator: a co-located cavity-atom frequency ratio across altitudes must yield a slope $\Delta R/R \simeq 2\Delta\Phi/c^2$ in DFD, versus strict null in GR.

Why this is fundamental:

- One principle \rightarrow complete framework, as in GR itself.
- No extra fields or ad hoc functions: $n = e^{\psi}$, $\mathbf{a} = \frac{c^2}{2} \nabla \psi$, and μ follow inevitably.
- The nondispersive band constraint preserves consistency with precision electrodynamics and ensures two-way c invariance.
- Action principle ensures mathematical consistency (existence, stability).
- Effective field theory shows μ arises naturally from loop-induced derivative expansions.
- Decisive falsifier: the cavity-atom test can confirm or kill the theory with current technology.

In sum, DFD stands not as "sophisticated phenomenology," but as a *principled*, *testable alternative* to GR, derived from a single optical postulate. Its hallmark is falsifiability: if the cavity–atom experiment yields null, the theory fails; if non-null, GR is ruled out. This clarity makes DFD uniquely positioned among modern alternatives to merit rigorous scrutiny.

Sincerely,

Gary Alcock

Independent Researcher