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Abstract

We investigate electromagnetic back-reaction on scalar background fields in extended
gravity theories. We consider a minimal extension of Density Field Dynamics (DFD) in
which the electromagnetic (EM) stress acts back on the scalar background 1 with a single
dimensionless parameter A. When A = 1, EM probes the optical metric n = ¢¥ but does not
source t; when |[A — 1| # 0, EM can pump 1. We show that the mere stability of existing
high—@Q cavities (no observed parametric instability near twice the drive frequency) provides
an “accidental” constraint |\ — 1| < 3 x 107° under deliberately conservative assumptions.
The same equations, used intentionally with modest modulation depth and multi—cavity
geometry, imply an immediately accessible search sensitivity approaching |A — 1| ~ 10714,
We state both a driven (2w = Q) and a parametric (2w ~ 2, ) route, derive compact
design laws, and explain why such effects were not already seen in standard metrology
workflows.

1 Physical interpretation of |\ — 1| #0

Technical summary. X toggles whether EM only rides the 1 background (A = 1) or also
pushes it (|]A — 1| # 0); the latter allows EM cavities to drive or parametrically amplify a
normal mode.

Intuitive picture. Think of ¢ as the water and EM as a paddle. If A = 1, the paddle
slides across without making waves. If [\ — 1| # 0, the paddle does make waves; splash with the
right rhythm and the waves grow.

2 Mode equation and two pumping channels
Reduce the 9 field to a single lab mode ¢(t) with natural frequency €2y, and damping ~,:
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Here u(r) is the normalized spatial profile of the 1) mode, M, its effective mass, U(t) the stored
EM energy, and
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whose time average carries a 2w component for a drive at w. We use U(t) = Uy [1 +m cos(2wt)]
with modulation depth m <« 1.
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(i) Driven channel (2w = Qw). The resonant steady amplitude is
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where Z,, is the 2w component and G the geometry overlap.



(ii) Parametric channel (2w ~ 2Q,). Writing the stiffness modulation as g—equation coef-
ficient o< U(t) gives a Mathieu gain parameter [8]

h = (A—l)&?—[m, F:%h(@—mp. (4)
The instability threshold is
Aty — 20 M )
Qy UgHm
with the positive overlap [6]
H= [}O/u2(r) w(r) d3r, w = %OEQ + %H? (6)

3 Geometry transparency and two compact laws

3.1 Driven overlap G: when it cancels and how to restore it

For a single, symmetric pillbox driven in a pure eigenmode (e.g. TMp1p or TEg11), Bessel

identities and time-averaged equipartition make the cross—section integral of B2 — E? /¢? vanish,
so G =~ 0. It revives with (i) a co-phased TE+TM superposition, (ii) a small iris or near—cutoff
asymmetry, or (iii) beating of two nearby modes. A convenient parametrization is

G = u(z0)e 200y Uy cos ¢, (7)

with 7y = 0(0.1-1) for well-matched TE/TM radii and ¢ their phase [7].

3.2 Parametric overlap H: robust area—ratio law

For a 1 “tube” of height L and cross—section Ay, with N compact cavities of total aperture
Acavtot Placed at antinodes, one finds
2 Acav,tot

H ~ Zl‘ieﬁ‘ Aw y (8)

with ke = O(1) capturing mode—shape details. Plugging this into (5) yields the design rule

Aty = 28 )
e cs Upm Kefr Acav,tot

after using My, ~ AyL/(2mc,) for the 1D standing mode (with 1—sound speed c;).!

4 Accidental bound vs. intentional search

Accidental constraint (conservative)

Take a single high-@Q cavity: Uy ~ 100kJ, m ~ 0.01 (ambient amplitude/PLL dither), v, /§y ~
1073 (weak loss), Ay~0.8 m?2, Acav tot ~ 3 X 1073 m? (one iris), ke ~ 1, cs <c. Using (9) gives

IAN—=1]<3x1077,

because any substantially larger coupling would have produced obvious parametric instability
near 2w in normal operation—and it has not.

! Any equivalent normalization gives the same scaling; the constant prefactors here are chosen so the law is
numerically tight for cylindrical tubes.



Intentional search (same physics, better knobs)

Keep the same setup but make it intentional: Uy — 1MJ, m — 0.1, array Acavtot at all
antinodes (x10), shrink A, by x3, and isolate to keep ~y,, unchanged. Equation (9) then points
to

A — 1| ~ 107 reach,

without changing the model or introducing new assumptions.

Table 1: Accidental vs. intentional settings and resulting reach.

Parameter Accidental Intentional
Stored energy Uy (J) 10° 10°
Modulation depth m 0.01 0.10
Cavity aperture Acay,tot (m?) 3x1073 3x 1072
Tube area Ay (m?) 0.8 0.27
Loss ratio 7y /Sy 1073 1073
Projected |\ — 1|min <3x107° ~ 1071

5 Why this was not already seen

(i) Pure eigenmodes suppress the driven channel (G~0). (ii) Parametric pumping needs delib-
erate 2w modulation of stored energy; routine metrology avoids such tones and heavily filters
them. (iii) Any residual 2w features are treated as technical AM sidebands, not as a new degree
of freedom, and are actively suppressed.

6 Orthogonal cross—check: driven amplitude

With a TE+TM superposition (phase ¢ = 0) so that nx # 0,

[A—1|nx Upcs
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Even modest values (nyx ~ 0.3, Up = 100kJ, Ay = 0.8m?, Yy = 0.03 s71) give Ay ~ 1.2 x
1073 |A — 1|, which crosses cavity-atom sensitivity [3] in the 10712-107% range for |\ — 1| in
1072-107'2, consistent with the parametric thresholds.

Intentional ¥-pump detection checklist

Required capabilities:
« High-Q resonator (Q > 10%) with stored energy Uy > 1 MJ (pulsed acceptable).
e Phase-stable amplitude modulation at 2w with depth m ~ 0.1 on stored energy.
o Placement of cavity apertures at ¢ antinodes (maximize H; use multiple irises).

 Phase-sensitive readout near 2,; preserve 2w tones (do not auto-suppress).

o Null sensitivity target: Ay < 10714 or equivalently |A—1| < 107! via Egs. (9)-(10).
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Conclusion

We are not asking anyone to believe new physics; we are asking them to notice the paramet-
ric instability that is not there. Unoptimized cavities accidentally constrain |A — 1|, and an
intentional 2w modulation test using the same hardware pushes ten orders tighter. A single
afternoon’s measurement could either discover A\ # 1 or constrain it below 1074
using existing apparatus. We invite groups with high—@) cavities and phase—stable 2w drive
to implement the intentional search of Egs. (9)—(10).

The broader framework within which this coupling appears is developed in Refs. [1, 2, 5],

with complementary experimental tests in matter-wave interferometry [4].
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Appendix: Figures

EM paddle

A = 1: rides only |X— 1| # 0: makes waves

Figure 1: Paddle-on—water analogy: probe—only vs. pump.
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Figure 2: Stability constraint: if |\ — 1| were too large, parametric instability would appear.
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