Accidental and Intentional Constraints on an EM $\to \psi$ Back–Reaction Coupling A conservative bound from cavity stability and a practical path to 10^{-14} Gary Alcock September 19, 2025 #### Abstract We investigate electromagnetic back-reaction on scalar background fields in extended gravity theories. We consider a minimal extension of Density Field Dynamics (DFD) in which the electromagnetic (EM) stress acts back on the scalar background ψ with a single dimensionless parameter λ . When $\lambda=1$, EM probes the optical metric $n=\mathrm{e}^{\psi}$ but does not source ψ ; when $|\lambda-1|\neq 0$, EM can $pump\ \psi$. We show that the mere stability of existing high-Q cavities (no observed parametric instability near twice the drive frequency) provides an "accidental" constraint $|\lambda-1|\lesssim 3\times 10^{-5}$ under deliberately conservative assumptions. The $same\ equations$, used intentionally with modest modulation depth and multi-cavity geometry, imply an immediately accessible search sensitivity approaching $|\lambda-1|\sim 10^{-14}$. We state both a driven ($2\omega=\Omega_{\psi}$) and a parametric ($2\omega\simeq 2\Omega_{\psi}$) route, derive compact design laws, and explain why such effects were not already seen in standard metrology workflows. ## 1 Physical interpretation of $|\lambda - 1| \neq 0$ **Technical summary.** λ toggles whether EM *only rides* the ψ background ($\lambda = 1$) or also *pushes* it ($|\lambda - 1| \neq 0$); the latter allows EM cavities to drive or parametrically amplify a ψ normal mode. **Intuitive picture.** Think of ψ as the water and EM as a paddle. If $\lambda = 1$, the paddle slides across without making waves. If $|\lambda - 1| \neq 0$, the paddle *does* make waves; splash with the right rhythm and the waves grow. # 2 Mode equation and two pumping channels Reduce the ψ field to a single lab mode q(t) with natural frequency Ω_{ψ} and damping γ_{ψ} : $$\ddot{q} + 2\gamma_{\psi}\dot{q} + \Omega_{\psi}^{2}q = \frac{(\lambda - 1)}{M_{\psi}} \int u(\mathbf{r}) \Xi(\mathbf{r}, t) d^{3}r + \alpha U(t) q.$$ (1) Here $u(\mathbf{r})$ is the normalized spatial profile of the ψ mode, M_{ψ} its effective mass, U(t) the stored EM energy, and $$\Xi(\mathbf{r},t) \equiv -\frac{1}{2} e^{-2\psi_0} \left(B^2 - \frac{E^2}{c^2} \right), \tag{2}$$ whose time average carries a 2ω component for a drive at ω . We use $U(t) = U_0 \left[1 + m \cos(2\omega t) \right]$ with modulation depth $m \ll 1$. (i) Driven channel ($2\omega = \Omega_{\psi}$). The resonant steady amplitude is $$|q|_{\text{res}} \simeq \frac{|\lambda - 1|}{2M_{\psi}\Omega_{\psi}\gamma_{\psi}} \left| \int u(\boldsymbol{r}) \,\widehat{\Xi}_{2\omega}(\boldsymbol{r}) \,\mathrm{d}^{3}r \right| \equiv \frac{|\lambda - 1||\mathcal{G}|}{2M_{\psi}\Omega_{\psi}\gamma_{\psi}},$$ (3) where $\widehat{\Xi}_{2\omega}$ is the 2ω component and \mathcal{G} the geometry overlap. (ii) Parametric channel ($2\omega \simeq 2\Omega_{\psi}$). Writing the stiffness modulation as q-equation coefficient $\propto U(t)$ gives a Mathieu gain parameter [8] $$h = (\lambda - 1) \frac{U_0}{M_{\psi} \Omega_{\psi}^2} \mathcal{H} m, \qquad \Gamma \simeq \frac{1}{2} h \Omega_{\psi} - \gamma_{\psi}. \tag{4}$$ The instability threshold is with the positive overlap [6] $$\mathcal{H} = \frac{1}{U_0} \int u^2(\mathbf{r}) w(\mathbf{r}) d^3r, \qquad w = \frac{\varepsilon_0}{4} E^2 + \frac{\mu_0}{4} H^2.$$ (6) ## 3 Geometry transparency and two compact laws ### 3.1 Driven overlap G: when it cancels and how to restore it For a single, symmetric pillbox driven in a pure eigenmode (e.g. TM_{010} or TE_{011}), Bessel identities and time–averaged equipartition make the cross–section integral of $B^2 - E^2/c^2$ vanish, so $\mathcal{G} \approx 0$. It revives with (i) a co–phased TE+TM superposition, (ii) a small iris or near–cutoff asymmetry, or (iii) beating of two nearby modes. A convenient parametrization is $$\mathcal{G} = u(z_0) e^{-2\psi_0} \eta_{\times} U_0 \cos \phi, \tag{7}$$ with $\eta_{\times} = \mathcal{O}(0.1-1)$ for well-matched TE/TM radii and ϕ their phase [7]. #### 3.2 Parametric overlap \mathcal{H} : robust area-ratio law For a ψ "tube" of height L and cross–section A_{ψ} , with N compact cavities of total aperture $A_{\text{cav.tot}}$ placed at antinodes, one finds $$\mathcal{H} \approx \frac{2}{L} \kappa_{\text{eff}} \frac{A_{\text{cav,tot}}}{A_{\psi}},$$ (8) with $\kappa_{\text{eff}} = \mathcal{O}(1)$ capturing mode-shape details. Plugging this into (5) yields the design rule $$|\lambda - 1|_{\min} = \frac{\pi \gamma_{\psi}}{c_s U_0 m} \frac{A_{\psi}^2}{\kappa_{\text{eff}} A_{\text{cav,tot}}}$$ (9) after using $M_{\psi} \simeq A_{\psi} L/(2\pi c_s)$ for the 1D standing mode (with ψ -sound speed c_s). #### 4 Accidental bound vs. intentional search #### Accidental constraint (conservative) Take a single high–Q cavity: $U_0 \sim 100 \,\mathrm{kJ}$, $m \sim 0.01$ (ambient amplitude/PLL dither), $\gamma_\psi/\Omega_\psi \sim 10^{-3}$ (weak loss), $A_\psi \sim 0.8 \,\mathrm{m}^2$, $A_{\mathrm{cav.tot}} \sim 3 \times 10^{-3} \,\mathrm{m}^2$ (one iris), $\kappa_{\mathrm{eff}} \sim 1$, $c_s \leq c$. Using (9) gives $$|\lambda - 1| \le 3 \times 10^{-5},$$ because any substantially larger coupling would have produced obvious parametric instability near 2ω in normal operation—and it has not. ¹Any equivalent normalization gives the same scaling; the constant prefactors here are chosen so the law is numerically tight for cylindrical tubes. ### Intentional search (same physics, better knobs) Keep the same setup but make it intentional: $U_0 \to 1 \,\mathrm{MJ}$, $m \to 0.1$, array $A_{\mathrm{cav,tot}}$ at all antinodes (×10), shrink A_{ψ} by ×3, and isolate to keep γ_{ψ} unchanged. Equation (9) then points to $$|\lambda - 1| \sim 10^{-14} \text{ reach},$$ without changing the model or introducing new assumptions. Table 1: Accidental vs. intentional settings and resulting reach. | Parameter | Accidental | Intentional | |--|-----------------------------|--------------------| | Stored energy U_0 (J) | 10^{5} | 10^{6} | | Modulation depth m | 0.01 | 0.10 | | Cavity aperture $A_{\text{cav,tot}}$ (m ²) | 3×10^{-3} | 3×10^{-2} | | Tube area A_{ψ} (m ²) | 0.8 | 0.27 | | Loss ratio $\gamma_{\psi}/\Omega_{\psi}$ | 10^{-3} | 10^{-3} | | Projected $ \lambda - 1 _{\min}$ | $\lesssim 3 \times 10^{-5}$ | $\sim 10^{-14}$ | ## 5 Why this was not already seen (i) Pure eigenmodes suppress the driven channel ($\mathcal{G} \approx 0$). (ii) Parametric pumping needs deliberate 2ω modulation of *stored energy*; routine metrology avoids such tones and heavily filters them. (iii) Any residual 2ω features are treated as technical AM sidebands, not as a new degree of freedom, and are actively suppressed. # 6 Orthogonal cross-check: driven amplitude With a TE+TM superposition (phase $\phi = 0$) so that $\eta_{\times} \neq 0$, $$\Delta \psi \equiv u(z_0) |q|_{\text{res}} \approx \frac{|\lambda - 1| \eta_{\times} U_0 c_s}{\pi A_{\psi} \gamma_{\psi}}.$$ (10) Even modest values ($\eta_{\times} \sim 0.3$, $U_0 = 100 \,\mathrm{kJ}$, $A_{\psi} = 0.8 \,\mathrm{m}^2$, $\gamma_{\psi} = 0.03 \,\mathrm{s}^{-1}$) give $\Delta \psi \sim 1.2 \times 10^{-3} \,|\lambda - 1|$, which crosses cavity–atom sensitivity [3] in the 10^{-12} – 10^{-15} range for $|\lambda - 1|$ in 10^{-9} – 10^{-12} , consistent with the parametric thresholds. #### Intentional ψ -pump detection checklist Required capabilities: - High-Q resonator $(Q \gtrsim 10^4)$ with stored energy $U_0 \gtrsim 1 \,\mathrm{MJ}$ (pulsed acceptable). - Phase-stable amplitude modulation at 2ω with depth $m \sim 0.1$ on stored energy. - Placement of cavity apertures at ψ antinodes (maximize \mathcal{H} ; use multiple irises). - Phase-sensitive readout near Ω_{ψ} ; preserve 2ω tones (do not auto-suppress). - Null sensitivity target: $\Delta \psi \lesssim 10^{-14}$ or equivalently $|\lambda 1| \lesssim 10^{-14}$ via Eqs. (9)–(10). #### 7 Conclusion We are not asking anyone to believe new physics; we are asking them to notice the parametric instability that is not there. Unoptimized cavities accidentally constrain $|\lambda - 1|$, and an intentional 2ω modulation test using the same hardware pushes ten orders tighter. A single afternoon's measurement could either discover $\lambda \neq 1$ or constrain it below 10^{-14} using existing apparatus. We invite groups with high-Q cavities and phase-stable 2ω drive to implement the intentional search of Eqs. (9)-(10). The broader framework within which this coupling appears is developed in Refs. [1, 2, 5], with complementary experimental tests in matter-wave interferometry [4]. ## Acknowledgments We thank microwave and optical cavity teams for maintaining exquisitely stable resonators that enable these constraints. ## Appendix: Figures Figure 1: Paddle-on-water analogy: probe-only vs. pump. Figure 2: Stability constraint: if $|\lambda - 1|$ were too large, parametric instability would appear. #### References - [1] G. Alcock, Density Field Dynamics: Completing Einstein's 1911–12 Variable-c Program with Energy-Density Sourcing and Laboratory Falsifiability, submitted to Class. Quantum Grav. (2025). - [2] G. Alcock, Strong Fields and Gravitational Waves in Density Field Dynamics: From Optical First Principles to Quantitative Tests, Zenodo preprint (2025). doi:10.5281/zenodo.17115941 - [3] G. Alcock, Sector-Resolved Test of Local Position Invariance Using Co-Located Cavity-Atom Frequency Ratios, submitted to Metrologia (2025). - [4] G. Alcock, Matter-Wave Interferometry Tests of Density Field Dynamics, submitted to Phys. Rev. Lett. (2025). - [5] G. Alcock, Density Field Dynamics Resolves the Penrose Superposition Paradox, submitted to Class. Quantum Grav. (2025). - [6] J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley (1998). - [7] R. E. Collin, Foundations for Microwave Engineering, 2nd ed., McGraw-Hill (1992). - [8] N. W. McLachlan, Theory and Application of Mathieu Functions, Dover (1964).